首页> 外文期刊>Frontiers in Built Environment >Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel
【24h】

Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel

机译:风洞中基于网络物理建模的建筑围护结构体系多目标优化设计

获取原文
           

摘要

This paper explores the use of a cyber-physical systems (CPS) a??loop-in-the-modela?? approach to optimally design the envelope and structural system of low-rise buildings subject to wind loads. Both the components and cladding (C&C) and the main wind force resisting system (MWFRS) are considered through multi-objective optimization. The CPS approach combines the physical accuracy of wind tunnel testing and efficiency of numerical optimization algorithms to obtain an optimal design. The approach is autonomous: experiments are executed in a boundary layer wind tunnel (BLWT), sensor feedback is monitored and analyzed by a computer, and optimization algorithms dictate physical changes to the structural model in the BLWT through actuators. To explore a CPS approach to multi-objective optimization, a low-rise structure with a parapet wall of variable height is considered. In the BLWT, servo-motors are used to adjust the parapet to a particular height. Parapet walls alter the location of the roof corner vortices, reducing suction loads on the windward facing roof corners and edges, a C&C design load. At the same time, parapet walls increase the surface area of the building, leading to an increase in demand on the MWFRS. A combination of non-stochastic and stochastic optimization algorithms were implemented to minimize the magnitude of suction and positive pressures on the roof of a low-rise building model, followed by stochastic multi-objective optimization to simultaneously minimize the magnitude of suction pressures and minimize base shear. Experiments were conducted at the University of Florida Experimental Facility (UFEF) of the National Science Foundationa??s (NSF) Natural Hazard Engineering Research Infrastructure (NHERI) program.
机译:本文探讨了网络物理系统(CPS)在“模型中的回路”中的使用。于风荷载下优化设计低层建筑围护结构的方法。通过多目标优化考虑了组件和包层(C&C)以及主要的抗风系统(MWFRS)。 CPS方法结合了风洞测试的物理准确性和数值优化算法的效率,以获得最佳设计。该方法是自主的:在边界层风洞(BLWT)中执行实验,由计算机监视和分析传感器反馈,并且优化算法通过执行器指示BLWT中结构模型的物理变化。为了探索多目标优化的CPS方法,考虑了具有可变高度的护墙的低层结构。在BLWT中,伺服电机用于将护墙板调节到特定的高度。护墙改变了顶角涡流的位置,从而减少了迎风面向的顶角和边缘的吸力负荷,降低了C&C设计负荷。同时,护墙增加了建筑物的表面积,导致对MWFRS的需求增加。结合了非随机和随机优化算法,以最小化低层建筑模型的屋顶上的吸力和正压力的大小,然后进行随机多目标优化,以同时最小化吸气压力的大小并最小化基础剪。实验是在美国国家科学基金会(NSF)自然灾害工程研究基础设施(NHERI)计划的佛罗里达大学实验设施(UFEF)中进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号