...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems
【24h】

Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems

机译:颗粒状碳基电极在甲烷生产生物电化学系统中作为阴极

获取原文

摘要

Methane-producing bioelectrochemical systems generate methane by using microorganisms to reduce carbon dioxide at the cathode with external electricity supply. This technology provides an innovative approach for renewable electricity conversion and storage. Two key factors that need further attention are production of methane at high rate, and stable performance under intermittent electricity supply. To study these key factors, we have used two electrode materials: granular activated carbon (GAC) and graphite granules (GG). Under galvanostatic control, the biocathodes achieved methane production rates of around 65 L CH4/m2catproj/d at 35 A/m2catproj, which is 3.8 times higher than reported so far. We also operated all biocathodes with intermittent current supply (time-ON/time-OFF: 4’- 2’, 3’- 3’, 2’- 4’). Current-to-methane efficiencies of all biocathodes were stable arund 60% at 10 A/m2catproj and slightly decreased with increasing OFF time at 35 A/m2catproj, but original performance of all biocathodes was recovered soon after intermittent operation. Interestingly, the GAC biocathodes had a lower overpotential than the GG biocathodes, with methane generation occurring at -0.52 V vs. Ag/AgCl for GAC and at -0.92 V for GG at a current density of 10 A/m2catproj. 16S rRNA gene analysis showed that Methanobacterium was the dominant methanogen and that the GAC biocathodes experienced a higher abundance of proteobacteria than the GG biocathodes. Both cathode materials show promise for the practical application of methane-producing BESs.
机译:产生甲烷的生物电化学系统通过利用微生物通过外部供电减少阴极处的二氧化碳来产生甲烷。这项技术为可再生电力的转换和存储提供了创新的方法。需要进一步关注的两个关键因素是甲烷的高产率和间歇供电下的稳定性能。为了研究这些关键因素,我们使用了两种电极材料:颗粒活性炭(GAC)和石墨颗粒(GG)。在恒电流控制下,生物阴极在35 A / m2 catproj下实现了约65 L CH4 / m2 catproj / d的甲烷生产速率,这是迄今为止报道的3.8倍。我们还使用间歇性供电(时间开/关:4'- 2',3'- 3',2'- 4')操作所有生物阴极。所有生物阴极的电流-甲烷效率在10 A / m2 catproj时稳定在60%左右,随着OFF时间的增加在35 A / m2 catproj时略有降低,但在间歇操作后很快恢复了所有生物阴极的原始性能。有趣的是,GAC生物阴极的过电势比GG生物阴极低,在10A / m2catproj的电流密度下,甲烷的生成相对于GAC的Ag / AgCl为-0.52 V,而GG的为-0.92V。 16S rRNA基因分析表明,甲烷杆菌是占主导地位的产甲烷菌,并且GAC生物阴极比GG生物阴极具有更高的蛋白细菌丰度。两种阴极材料都显示出甲烷生产BES的实际应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号