...
首页> 外文期刊>Frontiers in Plant Science >Auxin Control of Root Organogenesis from Callus in Tissue Culture
【24h】

Auxin Control of Root Organogenesis from Callus in Tissue Culture

机译:组织培养中愈伤组织对根器官发生的生长素控制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Introduction to direct and indirect de novo root regeneration During post-embryonic development, roots can be initiated by a programmed developmental order or by environmental and wound stimulation (Bellini et al., 2014 ; Xu and Huang, 2014 ; Birnbaum, 2016 ; Ikeuchi et al., 2016 ; Kareem et al., 2016 ; Lup et al., 2016 ; Rellan-Alvarez et al., 2016 ; Steffens and Rasmussen, 2016 ). De novo root regeneration (DNRR) is a type of plant regeneration to produce adventitious roots upon wounding or stress (Liu et al., 2014 ; Xu and Huang, 2014 ). For example, using leaf explants of Arabidopsis ( Arabidopsis thaliana ), adventitious roots could usually be regenerated by two ways: adventitious roots could be formed directly from detached leaf explants when cultured on B5 medium without added hormones (Chen et al., 2014 ; Liu et al., 2014 ), hereafter called direct DNRR (Figure 1A ); or adventitious roots could be formed from callus in tissue culture, hereafter called indirect DNRR. In indirect DNRR, leaf explants are first cultured on callus-inducing medium (CIM) with high auxin levels to induce callus formation, and then the callus is transferred to root-inducing medium (RIM) with low auxin levels or even on B5 medium without auxin supplement to allow root formation (Figure 1B ). Figure 1 Direct and indirect DNRR. (A) A system to study direct DNRR. Leaf explants were cultured on B5 medium without added hormones (Chen et al., 2014 ). (B) A system to study indirect DNRR. Leaf explants were cultured on CIM to induce callus and were then transferred to RIM or B5 medium to produce roots. (C,D) Indirect DNRR from rice (C) and Arabidopsis (D) . Leaf explants were first cultured on CIM for 11 d (C) or 6 d (D) and then transferred to B5 medium for another 6 d (C) or 5 d (D) . (E,F) WOX5 _( pro ) :GUS (He et al., 2012 ) in callus on CIM (E) and in roots after transferred to B5 medium (F) during indirect DNRR. Leaf explants were first cultured on CIM for 4 d before being transferred to B5 medium for another 2 d. Notably, the GUS signal was strong in newly formed callus cells on CIM (E) and was gradually restricted to the stem cell niche in root tips after transferred to B5 medium (F) . (G,H) Proposed cell lineage in direct DNRR (G) and indirect DNRR (H) . Scale bars, 1 mm in (C,D) and 100 μm in (E,F) . Many plants such as Arabidopsis and rice ( Oryza sativa ) can form adventitious roots from callus (Figures 1C,D ). While the cell fate transition during direct DNRR from Arabidopsis leaf explants has been carefully studied in Arabidopsis (Liu et al., 2014 ; Chen et al., 2016b , c ; Hu and Xu, 2016 ; Sheng et al., 2017 ), in indirect DNRR the cell fate transition is still not clear. How roots are formed from callus remains unanswered. In this paper, we present our analyses of the cell lineage of indirect DNRR and discuss the similarities and differences between direct and indirect DNRR. Cell fate transition during direct DNRR Here, we summarize the four steps of cell fate transition involved in direct DNRR from leaf explants together with adventitious rooting in other systems (Figure 1G ). In the first step “priming,” the endogenous auxin is transported into regeneration-competent cells (i.e., procambium and vascular parenchyma cells) in the vasculature near the wound and activates WUSCHEL-RELATED HOMEOBOX11 ( WOX11 ) expression for the fate transition from regeneration-competent cells to root founder cells (Liu et al., 2014 ; Chen et al., 2016a , b ). In the second step “initiation,” WOX11 and auxin coordinately activate WOX5 and LATERAL ORGAN BOUNDARIES DOMAIN16 ( LBD16 ) expression for the fate transition from root founder cells to root primordium (Liu et al., 2014 ; Hu and Xu, 2016 ; Sheng et al., 2017 ). WOX11 expression then decreases in this step (Liu et al., 2014 ; Hu and Xu, 2016 ). Auxin keeps a high level in the root primordium. In the third step “patterning,” cell division continues in the root primordium, which begins to differentiate into a root apical meristem (RAM). The auxin level is tuned down and auxin distribution is restricted to the tip of the meristem to confine the region of the stem cell niche (De Klerk et al., 1999 ; Della Rovere et al., 2013 ; Druege et al., 2016 ). WOX5 is gradually restricted into the stem cell niche and LBD16 expression decreases (Hu and Xu, 2016 ). In the fourth step “emergence,” the mature root tip and stem cell niche are formed and the root tip grows out of the leaf explant (Chen et al., 2016c ; Hu and Xu, 2016 ). Cell fate transition during indirect DNRR In tissue culture, adventitious roots could be obtained via indirect DNRR (Figure 1H ). On CIM, callus is induced from leaf explants by a high level of auxin. Recent theory suggests that callus formation is via the rooting pathway (Che et al., 2007 ; Atta et al., 2009 ; Sugimoto et al., 2010 ; Fan et al., 2012 ; He et al., 2012 ; Liu et al., 2014 ) and also involves two cell fate transition steps in Arabidopsis (Liu et al., 20
机译:直接和间接从头再生的简介在胚后发育过程中,可以通过程序化的发育顺序或通过环境和伤口刺激来启动根(Bellini等人,2014; Xu和Huang,2014; Birnbaum,2016; Ikeuchi等人)。等人,2016; Kareem等人,2016; Lup等人,2016; Rellan-Alvarez等人,2016; Steffens和Rasmussen,2016)。从头生根再生(DNRR)是一种植物再生,在受伤或胁迫时会产生不定根(Liu等,2014; Xu和Huang,2014)。例如,使用拟南芥(Arabidopsis thaliana)的叶片外植体,通常可以通过两种方式再生不定根:在不添加激素的B5培养基上培养时,不定根可以直接由离体的叶片外植体形成(Chen et al。,2014; Liu等人,2014年),以下称为直接DNRR(图1A);组织培养中的愈伤组织可以形成不定根或不定根,以下称为间接DNRR。在间接DNRR中,首先在具有高生长素水平的愈伤组织诱导培养基(CIM)上培养叶片外植体以诱导愈伤组织的形成,然后将愈伤组织转移至具有低生长素水平的愈伤组织诱导培养基(RIM)或什至在没有B5培养基的B5培养基上进行培养。生长素补充剂可以使根形成(图1B)。图1直接和间接DNRR。 (A)研究直接DNRR的系统。在没有添加激素的B5培养基上培养叶片外植体(Chen等,2014)。 (B)研究间接DNRR的系统。将叶片外植体在CIM上培养以诱导愈伤组织,然后将其转移至RIM或B5培养基中以产生根。 (C,D)来自稻米(C)和拟南芥(D)的间接DNRR。首先将叶片外植体在CIM上培养11 d(C)或6 d(D),然后转移到B5培养基中再培养6 d(C)或5 d(D)。 (E,F)WOX5_(pro):GUS(He等人,2012)在CIM(E)上的愈伤组织中以及在间接DNRR期间转移至B5培养基(F)后的根中。首先将叶片外植体在CIM上培养4 d,然后再转移到B5培养基中再培养2 d。值得注意的是,GUS信号在CIM(E)上新形成的愈伤细胞中很强,并且在转移至B5培养基(F)后逐渐被限制在根尖的干细胞生态位中。 (G,H)在直接DNRR(G)和间接DNRR(H)中提出的细胞谱系。比例尺,(C,D)为1毫米,(E,F)为100μm。许多植物,如拟南芥和水稻(稻(Oryza sativa))可以从愈伤组织中形成不定根(图1C,D)。虽然已经在拟南芥中仔细研究了拟南芥叶片外植体直接DNRR过程中的细胞命运转变(Liu等人,2014年; Chen等人,2016b,c; Hu和Xu,2016年; Sheng等人,2017年),但间接DNRR的细胞命运转移仍不清楚。愈伤组织如何形成根尚未得到答案。在本文中,我们介绍了对间接DNRR的细胞谱系的分析,并讨论了直接和间接DNRR之间的异同。直接DNRR过程中的细胞命运转变在这里,我们总结了来自叶片外植体的直接DNRR中涉及细胞命运转变的四个步骤,以及在其他系统中不定根的生长期(图1G)。在第一步“启动”中,内源性生长素被转运到伤口附近脉管系统中具有再生能力的细胞(即原核和维管实质细胞)中,并激活WUSCHEL相关的HOMEOBOX11(WOX11)表达,以实现从再生-感受态细胞转化为根始祖细胞(Liu等人,2014; Chen等人,2016a,b)。在第二步“启动”中,WOX11和植物生长素协同激活WOX5和横向器官边界域16(LBD16)的表达,以实现从根始祖细胞到根原基的命运转变(Liu等人,2014; Hu和Xu,2016; Sheng等。等人,2017年)。然后在该步骤中WOX11表达降低(Liu等,2014; Hu和Xu,2016)。生长素在根原基中保持较高水平。在第三步“构图”中,细胞分裂在根原基中继续进行,其开始分化为根顶端分生组织(RAM)。调节植物生长素的水平,将植物生长素的分布限制在分生组织的顶端,以限制干细胞生态位的区域(De Klerk等,1999; Della Rovere等,2013; Druege等,2016)。 。 WOX5逐渐被限制进入干细胞生态位,而LBD16的表达下降(Hu和Xu,2016年)。在第四步“萌芽”中,形成了成熟的根尖和干细胞生态位,并且根尖从叶片外植体中生长出来(Chen等,2016c; Hu和Xu,2016)。间接DNRR过程中的细胞命运转变在组织培养中,可以通过间接DNRR获得不定根(图1H)。在CIM上,高水平的生长素从叶片外植体诱导愈伤组织。最近的理论表明愈伤组织的形成是通过生根途径进行的(Che et al。,2007; Atta et al。,2009; Sugimoto et al。,2010; Fan et al。,2012; He et al。,2012; Liu et al。 (2014年),并且还涉及拟南芥中的两个细胞命运转变步骤(Liu等人,20

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号