首页> 外文期刊>Frontiers in Plant Science >Transcriptome Dataset of Halophyte Beach Morning Glory, a Close Wild Relative of Sweet Potato
【24h】

Transcriptome Dataset of Halophyte Beach Morning Glory, a Close Wild Relative of Sweet Potato

机译:甘薯野生近缘种Halophyte Beach牵牛花的转录组数据集

获取原文
           

摘要

Introduction Soil salinity is one of the major environmental factors causing crop loss worldwide. Currently, 33% of the global arable land is affected by salinity, hampering crop production in these fields (Flowers and Colmer, 2008 ). As the global population continues to rise, crop production is facing increasing demands (Flowers and Muscolo, 2015 ). With the combined pressures to sustain or even increase the world's food supply, salt tolerance is becoming an important agronomic trait to support crop plant growth and production in marginal and high saline soils.Salt tolerance is a genetically complex trait that has evolved independently by different mechanisms in numerous lineages (Bromham, 2015 ). Efforts to improve salt tolerance in crops through selective breeding have proven difficult (Ruan et al., 2010 ) due to a lack of genetic resources and limited salt tolerance associated with known molecular markers (Deinlein et al., 2014 ).We conducted a transcriptome analysis of a wild relative of the salt-sensitive sweet potato ( Ipomoea batatas ): the beach morning glory ( Ipomoea imperati ). Beach morning glory is a halophyte that thrives in beach ecosystems of high salt content. Our objective was to better understand the genetic basis for salt tolerance in I. imperati , so that future studies might transfer the salt tolerance genes into sweet potatoes. Value of the data Beach Morning is closely related to sweet potatoes, but commonly grows in high salt conditions. This creates a potential genetic source for adding much-needed salt tolerance into future sweet potato breeding strategies. To date, there is no well-characterized transcriptome for either sweet potato or morning glory and no source for gene annotation when exposed to high levels of salt. This dataset of biological triplicates can help in the further understanding of the plant pathways involved under varying salt levels. These data will help identify relevant genes that are significant differentially expressed under salt stress as well as identify genes that are detectable under normal growing conditions in both root and leaf tissue. Gene expression can be compared between the 2 tissue types to identify how different tissues respond within the plant to salt exposure. Data Experimental design, materials, and methods Plant materials Total RNA extraction and quality control, library preparation, and RNA-seq Seeds from I. imperati were collected from St. George Island, Florida as seed and grown in the lab. At 2 weeks of growth 600 mM NaCl solution (treatment) or water (control) was applied to the soil, daily, for 7 days. Three biological replicates for each treatment and species were harvested at 0, 3, 24 h, and 7 days. Total RNA was extracted from the roots and leaves using the Qiagen protocol and treated with DNAse (Qiagen). Quantity and integrity of the extracted total RNA were determined using an Agilent 2100 bioanalyzer (Agilent), respectively, to be RIN >9. A total of 12 RNA-Seq libraries, including three biological replicates, were prepared using Illumina TruSeqRNA sample Preparation Kit (Illumina). Twelve normalized cDNA libraries were constructed and sequenced using the Illumina Hiseq2500 platform (North Carolina State University) to generate 100 bp paired-end raw reads.Raw reads were deposited into the Short Read Archive (SRA database, http://www.ncbi.nlm.nih.gov/sra ) with the following accession information: Bioproject ID = PRJNA322032 Biosample accession Roots = SAMN05007696, SAMN05271550, SAMN05271551 Leafs = SAMN05271552, SAMN05271553, SAMN05271554 SRA Root tissue experiment = SRX1771615, SRX1858743, SRX1858745 SRA Leaf tissue experiment = SRX1858747, SRX1858786, SRX1858810 Root and leaf tissue experiments contain sequence reads of triplicate runs for both salt treated and control. Transcriptome De novo assembly Sequence reads were filtered using the Fastx-toolkit (Gordon and Hannon, 2010 ) for quality and adapter removal using the fastq_quality_trimmer tool with the following parameters: -Q33 -v -t 20. Paired ends were corrected and repaired using Perl script, PE_FIX_POSTQC.pl (all scripts described herein are available at https://github.com/bioinformagical/SweetPotatoRNA-Seq ). Paired reads were validated using validateHiseqPairs.pl.Reads were combined across all conditions and de novo assembled via Trinity (Grabherr et al., 2011 ; version r2013-02-25) using default settings in order to build a suitable set of reference contigs (column 4 of Table 1 ). These contigs are used for the purposes of determining differential gene expression and pathway level analysis (paper in preparation). Assembly is publicly available on Figshare at: https://figshare.com/articles/Morning_Glory_Transcriptome_assembly/3498239 . Table 1 Summary of assembly, from sequencing reads produced to final unigenes assembled . Pre assembly Number of reads Post assembly Number of sequences Raw reads Leaf + Root 252,166,154 Trinity 94,728 Filtered reads Leaf + Root 201
机译:简介土壤盐分是导致全球农作物损失的主要环境因素之一。目前,全球33%的耕地受到盐碱化的影响,从而阻碍了这些领域的农作物生产(Flowers和Colmer,2008年)。随着全球人口的持续增长,农作物的生产正面临着日益增长的需求(Flowers和Muscolo,2015年)。随着维持甚至增加世界粮食供应的综合压力,耐盐性已成为支持边际和高盐分土壤中作物生长和生产的重要农艺性状。 (Bromham,2015)。由于缺乏遗传资源和与已知分子标记有关的耐盐性有限(Deinlein等,2014),通过选择性育种提高作物耐盐性的努力已被证明是困难的(Ruan等,2010)。盐敏感甘薯(Ipomoea batatas)的野生近缘种的分析:海滩牵牛花(Ipomoea imperati)。海滩牵牛花是在高盐含量的海滩生态系统中繁盛的盐生植物。我们的目的是更好地了解白僵菌耐盐性的遗传基础,以便将来的研究可以将耐盐基因转移到甘薯中。数据价值海滩早晨与红薯密切相关,但通常在高盐条件下生长。这为将来的甘薯育种策略增加了急需的耐盐性创造了潜在的遗传来源。迄今为止,甘薯或牵牛花的转录组都没有很好的表征,当暴露于高盐水平时,也没有基因注释的来源。这个一式三份的生物数据集可以帮助进一步了解不同盐水平下所涉及的植物途径。这些数据将有助于鉴定在盐胁迫下显着差异表达的相关基因,以及鉴定在正常生长条件下在根和叶组织中均可检测到的基因。可以在两种组织类型之间比较基因表达,以鉴定植物内不同组织对盐暴露的反应。数据实验设计,材料和方法植物材料总植物提取总RNA,质量控制,文库制备和RNA-seq从佛罗里达州圣乔治岛收集的种子作为种子并在实验室中生长。生长2周后,每天将600 mM NaCl溶液(处理)或水(对照)施用到土壤中7天。每种处理和物种在0、3、24小时和7天收获三个生物学重复样品。使用Qiagen方案从根和叶中提取总RNA,并用DNAse(Qiagen)处理。分别使用Agilent 2100生物分析仪(Agilent)确定提取的总RNA的数量和完整性为RIN> 9。使用Illumina TruSeqRNA样品制备试剂盒(Illumina)制备了总共12个RNA-Seq文库,包括三个生物学重复样本。使用Illumina Hiseq2500平台(北卡罗莱纳州立大学)构建十二个标准化的cDNA文库并进行测序,以生成100 bp的配对末端原始读物。 nlm.nih.gov/sra)并具有以下登录信息:生物项目ID = PRJNA322032生物样品登录根= SAMN05007696,SAMN05271550,SAMN05271551叶子= SAMN05271552,SAMN05271553,SAMN05271554 SRA根组织实验= SRX1771615,SRX1858743 S,组织SRX1858745 ,SRX1858786,SRX1858810根和叶组织实验均包含针对盐处理和对照的三次重复运行的序列读数。转录组从头组装使用Fastx-toolkit(Gordon和Hannon,2010年)过滤序列读数,以确保质量,并使用带有以下参数的fastq_quality_trimmer工具去除接头的去除:-Q33 -v -t 20.配对的末端使用Perl进行了校正和修复。脚本PE_FIX_POSTQC.pl(此处描述的所有脚本均可在https://github.com/bioinformagical/SweetPotatoRNA-Seq上找到)。配对的读段使用validateHiseqPairs.pl进行了验证。在所有条件下将读段组合在一起,并使用默认设置通过Trinity(Grabherr et al。,2011; version r2013-02-25)从头重新组装,以构建一组合适的参考重叠群(表1的第4列)。这些重叠群用于确定差异基因表达和途径水平分析的目的(准备中的论文)。程序集在Figshare上公开可用:https://figshare.com/articles/Morning_Glory_Transcriptome_assembly/3498239。表1组装摘要,从产生的测序读物到最终的unigenes组装。汇编前的读取数汇编后的序列数原始读取树叶+根252,166,154三位一体94,728过滤的读数树叶+根201

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号