首页> 外文期刊>Frontiers in Plant Science >Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants
【24h】

Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

机译:叶绿体基因组的代谢工程表明,酵母 ArDH 基因赋予植物更高的盐度和干旱耐受性

获取原文
           

摘要

Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase ( ArDH ) reduces D -ribulose to D -arabitol where D -ribulose is derived by dephosphorylating D -ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4–5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses.
机译:渗透保护剂可稳定蛋白质和膜,使其免受高浓度盐和其他有害溶质的变性作用。在酵母中,阿拉伯糖醇脱氢酶(ArDH)将D-核糖还原为D-阿拉伯糖醇,其中D-核糖通过在氧化戊糖途径中对D-核糖5-PO4进行磷酸化而得到。通过引入编码多元醇的基因,通过叶绿体基因组的代谢工程可以开发植物中的渗透耐受性,因为叶绿体提供了高水平的转基因表达和抑制。在这里,我们报告说,烟草叶绿体中的ArDH表达赋予对NaCl的耐受性(最高400 mM)。与野生型(WT)相比,转基因植物在400 mM NaCl中仅存活4-5周,而植物保持绿色并在浓度高达350 mM NaCl时正常生长。此外,考虑到由于阿拉伯糖醇在叶绿体中的积累,膜和蛋白质在胁迫条件下受到保护,因此在液体培养基中的聚乙二醇(PEG,最高达6%)也挑战了一个星期大的幼苗。幼苗对6%的PEG耐受,这表明ARDH酶通过代谢工程在干旱条件下维持叶绿体中膜的完整性。因此,该基因可以在农艺植物中表达以抵抗非生物胁迫。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号