...
首页> 外文期刊>Frontiers in Physiology >Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech
【24h】

Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech

机译:机械水ore的机械感受器和中间神经元对触觉刺激的编码

获取原文
           

摘要

For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging, and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells), approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure, and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical, and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity. This hypothesis is supported by our finding that previously identified local bend interneurons receive input from both P and T cells. Some of these interneurons seem to integrate mechanoreceptor inputs, while others appear to use temporal response cues, presumably acting as coincidence detectors. Further voltage sensitive dye studies can test these hypotheses how a tiny nervous system performs highly precise stimulus processing.
机译:对于许多动物而言,触觉信息的处理在诸如探索,觅食和避免刺激的行为环境中是至关重要的任务。水ech很少接触食物,对触觉刺激产生了能量有效的反应,避免了不必要的肌肉运动:局部弯曲行为仅使体壁的一小部分远离接触皮肤的物体,而其余动物保持静止。令人惊奇的是,这种局部行为反应的精确度类似于人类指尖的空间判别阈值,尽管水skin皮肤受机械感受器的数量减少了一个数量级,并且每个中枢神经节总共仅包含400个独立识别的神经元。先前的研究表明,这种行为是由三层前馈网络控制的,该网络由四个机械感受器(P细胞),大约20个中间神经元和10个个性化的运动神经元组成,所有这些都通过重叠,对称的调谐曲线来编码触觉刺激的位置。 。另外,机械力的编码归因于三种类型的机械感受器,它们对不同的强度范围有反应:T细胞用于触摸,P细胞用于压力,N细胞用于强力,有害的皮肤刺激。在这项研究中,我们提供证据表明水the中的触觉刺激编码比以前认为的要复杂。结合的电生理,解剖学和电压敏感性染料方法表明,P细胞和T细胞在触觉信息处理中均起主要作用,导致局部弯曲。我们的结果表明,触觉编码既不依赖于不同细胞类型的不同作用力强度范围,也不依赖于位置编码来限制尖峰计数。取而代之的是,我们建议P细胞和T细胞形成一个混合类型的种群,该种群同时采用时间响应特征和峰值计数来对触摸位置和力度进行多路复用编码。我们的发现支持了这一假设,即先前确定的局部弯曲中间神经元从P细胞和T细胞接收输入。这些中间神经元中的一些似乎整合了机械感受器输入,而其他一些似乎使用了时间响应线索,大概充当了巧合检测器。进一步的电压敏感染料研究可以检验这些假设,即微小的神经系统如何执行高精度的刺激过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号