...
首页> 外文期刊>Frontiers in Physiology >Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel
【24h】

Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel

机译:Kv1.3离子通道的线粒体超微结构和葡萄糖信号通路

获取原文
           

摘要

Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3~(?∕?)) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, G_(olf). Kv1.3~(?∕?)mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3~(?∕?)male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3~(?∕?)mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3~(?∕?)mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
机译:钾离子通道Kv1.3(Kv1.3〜(?∕?))的基因靶向缺失导致“超级嗅觉”小鼠的感觉表型包括与嗅觉回路改变相关的嗅觉能力增强,嗅觉回路的丰度增加。嗅觉纤毛,并增加了气味受体和G蛋白G_(olf)的表达。 Kv1.3〜(?∕?)小鼠还具有代谢表型,包括体重减轻和脂肪减少,总能量消耗(TEE)增加,运动能力增强以及对饮食和遗传诱导的肥胖症的抵抗力。我们探讨了两个细胞方面,以阐明嗅球(OB)中Kv1.3通道丢失可能增强葡萄糖利用和代谢率的机制。首先,使用原位杂交我们发现Kv1.3和4型胰岛素依赖型葡萄糖转运蛋白(GLUT4)共定位于OB的二尖瓣细胞层。通过构建孔突变(W386F Kv1.3)破坏Kv1.3传导足以独立地将GLUT4转运至HEK 293细胞的质膜。由于OB的二尖瓣细胞的嗅觉感知和动作电位(AP)激发频率的维持对能量的需求很高,并且线粒体中也表达了Kv1.3,因此我们接下来探索了该细胞器在二尖瓣细胞中的结构。我们用中度高脂饮食(MHF,31.8%kcal脂肪)攻击野生型(WT)和Kv1.3〜(?α?)雄性小鼠4个月,然后使用透射电子显微镜检查OB超微结构。在WT小鼠中,饮食引起的肥胖(DIO)后线粒体显着增大,线粒体较少,这可能是由于线粒体的原因。有趣的是,与野生型小鼠相比,Kv1.3〜(Δβ)小鼠的线粒体明显更小。与他们对DIO的新陈代谢抗性相似,Kv1.3〜(Δβ?)小鼠在经过改良饮食后,其横截面积和丰度没有改变。我们非常有兴趣了解OB中Kv1.3通道的定向中断如何修改TEE。我们的研究表明,Kv1.3调节线粒体结构并改变葡萄糖利用。有两个重要的代谢变化,它们可以驱动整个系统从OB开始的代谢变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号