首页> 外文期刊>Frontiers in Plant Science >Towards an Integrated Mycorrhizal Technology: Harnessing Mycorrhiza for Sustainable Intensification in Agriculture
【24h】

Towards an Integrated Mycorrhizal Technology: Harnessing Mycorrhiza for Sustainable Intensification in Agriculture

机译:迈向综合菌根技术:利用菌根促进农业可持续集约化

获取原文
           

摘要

Background Sustainability in agriculture In order to meet future needs of a growing human population and to achieve food security in the context of climate change, food production will likely need to increase—among other measures—while at the same time minimizing negative environmental impact (Foley et al., 2011 ). Sustainable intensification of agriculture (Garnett et al., 2013 ; Pretty and Bharucha, 2014 ; Andres and Bhullar, 2016 ; Gunton et al., 2016 ), sometimes also called ecological intensification, is likely to include key aspects of conservation agriculture (e.g., Hobbs et al., 2008 ; Giller et al., 2015 ). Pillars of conservation agriculture (FAO, 2015 ) are no-till practices (Pittelkow et al., 2015 ), continuous crop cover (by various means, for example cover crops) and diversification practices (multi-cropping and crop rotations; Ponisio et al., 2015 ). The potential role of mycorrhiza in sustainable agriculture There is a steadily growing appreciation of the integral importance of soil life in agricultural sustainability (e.g., M?der et al., 2002 ; Wagg et al., 2014 ; Bender et al., 2016 ), including plant-symbiotic associations. Among these symbioses a prominent player is mycorrhiza, the widespread symbiotic association of fungi with plant roots (Smith and Read, 2008 ). Much has been written about the role of mycorrhiza in agroecosystems, in particular about arbuscular mycorrhiza (AM), formed by fungi in the phylum Glomeromycota, to which this paper mostly refers. AM fungi are obligate symbionts (they need a living host during their entire life cycle) with tight regulation of carbon-for-nutrients exchange between the host and the fungus. During their evolution, AM fungi have lost the enzymatic ability to degrade carbon compounds (Tisserant et al., 2013 ), which prevents them from becoming necrotrophic pathogens (the most common type of root-fungal pathogens). The AM symbiosis has been much discussed in the context of agriculture, (i) because AM is the dominant mycorrhiza formed by most crops (an exception being for example crops in the Brassicaceae); (ii) because of the potentially positive, multifunctional role of AM in plant nutrition, pathogen protection, stress tolerance and soil structure provision (Hamel, 1996 ; Smith and Read, 2008 ; Gianinazzi et al., 2010 ; Leifheit et al., 2014 ); (iii) because many agricultural practices (e.g., tillage, fertilization, non-host crops) tend to negatively affect AM fungal abundance and diversity, thus potentially affecting functioning; and (iv) because AM fungi can be managed. Defining mycorrhizal technology The focus in applied research on mycorrhiza in sustainable agriculture could be circumscribed as developing mycorrhizal technology. Clearly most easily recognized as a mycorrhizal technology is the production and application of mycorrhizal fungal inoculum (Gianinazzi et al., 2002 ; Vosatka et al., 2012 ; Solaiman et al., 2014 ), directly addressing the decline in mycorrhizal abundance in agricultural fields. Inoculation can have demonstrable yield benefits, powerfully documented by the recent, very in-depth study by Hijri ( 2016 ) analyzing 231 potato field trials. Nevertheless, we argue here that this should not be the exclusive focus of next-generation mycorrhizal technology. A recent analysis concluded that one of the most striking aspects of sustainable agricultural intensification is an “increase in knowledge per hectare” (Buckwell et al., 2014 ), i.e., a better understanding of how to achieve resource-efficient agroecosystems with minimal environmental impacts in any given location. This is a very useful conceptualization that helps frame what mycorrhizal technology could or should increasingly mean.We here propose a definition of “mycorrhizal technology” as the set of measures to optimize local mycorrhizal abundance and diversity in terms of functioning for attaining sustainability of agroecosystems. Optimization here means increasing mycorrhizal benefits (in terms of yield and sustainability of other ecosystems processes) within given socioeconomic constraints, i.e., there will always be practical limits at the farm level to achieving the full theoretical potential (e.g., Lamarque et al., 2014 ). This definition includes sustainability as a clear goal and it is inclusive of many approaches discussed in the following. Mycorrhizal technology: components and research needs Components of an inclusive mycorrhizal technology We propose some key elements of an inclusive mycorrhizal technology (Figure 1 ): monitoring, agricultural management, database tools, plant breeding and ecological engineering of communities of mycorrhizal fungi (“myco-engineering”) and their associated microbiota. Monitoring refers to assessment of the abundance (in roots and soil) and diversity of mycorrhizal fungal abundance in the field. Management represents a complex set of tools that can impact abundance and diversity of mycorrhiza, including agronomic practices with
机译:背景技术农业的可持续性为了满足日益增长的人口的未来需求并在气候变化的背景下实现粮食安全,除其他措施外,粮食生产可能需要增加,同时最大程度地减少对环境的负面影响(Foley等人,2011)。可持续的农业集约化(Garnett等,2013; Pretty and Bharucha,2014; Andres and Bhullar,2016; Gunton等,2016),有时也称为生态集约化,可能包括保护性农业的关键方面(例如, Hobbs等,2008; Giller等,2015)。保护性农业的支柱(粮农组织,2015年)为免耕做法(Pittelkow等人,2015年),连续性作物覆盖(通过各种方式,例如有盖作物)和多样化做法(多作和轮作); Ponisio等人。,2015)。菌根在可持续农业中的潜在作用人们日益认识到土壤生命在农业可持续性中的整体重要性(例如M?der等,2002; Wagg等,2014; Bender等,2016)。 ,包括植物共生关联。在这些共生物中,菌根是一种显着的参与者,它是真菌与植物根部之间广泛的共生关联(Smith和Read,2008年)。关于菌根在农业生态系统中的作用已有许多文献报道,尤其是关于由真菌在球状菌门中形成的丛枝菌根(AM)的研究。 AM真菌是专性共生菌(它们在整个生命周期中都需要一个活着的宿主),并严格控制宿主与真菌之间的碳对营养交换。在其进化过程中,AM真菌丧失了降解碳化合物的酶促能力(Tisserant等,2013),这阻止了它们成为坏死性病原体(最常见的根真菌病原体)。在农业领域中,AM共生已被广泛讨论:(i)因为AM是大多数农作物形成的主要菌根(例外,例如十字花科的作物); (ii)由于AM在植物营养,病原体保护,胁迫耐受性和土壤结构提供方面具有潜在的积极的多功能作用(Hamel,1996; Smith and Read,2008; Gianinazzi等,2010; Leifheit等,2014 ); (iii)因为许多农业实践(例如耕作,施肥,非寄主农作物)往往会对AM真菌的丰度和多样性产生负面影响,从而可能影响其功能; (iv)因为可以管理AM真菌。定义菌根技术可持续农业中菌根的应用研究的重点可以被界定为发展菌根技术。显然,最容易被认为是菌根技术的是菌根真菌接种物的生产和应用(Gianinazzi等,2002; Vosatka等,2012; Solaiman等,2014),直接解决了农业领域菌根丰度的下降问题。 。 Hijri(2016)最近对231个马铃薯田间试验进行了非常深入的研究,充分证明了接种可带来明显的产量收益。尽管如此,我们在这里认为,这不应成为下一代菌根技术的排他性重点。最近的一项分析得出结论,可持续农业集约化的最显着方面之一是“每公顷知识的增加”(Buckwell等人,2014年),即对如何实现资源节约型农业生态系统,对环境的影响最小的更好理解。在任何给定位置。这是一个非常有用的概念化概念,有助于理解菌根技术的含义或含义。我们在这里提出“菌根技术”的定义,作为在实现农业生态系统可持续性的功能方面优化局部菌根丰度和多样性的一系列措施。这里的优化意味着在给定的社会经济约束下,增加菌根效益(就产量和其他生态系统过程的可持续性而言),即,在农场层面上,要实现最大的理论潜能始终存在实际限制(例如,Lamarque等,2014) )。该定义将可持续性作为一个明确的目标,并且包括以下讨论的许多方法。菌根技术:包容性菌根技术的组成部分我们提出了包容性菌根技术的一些关键要素(图1):监测,农业管理,数据库工具,菌根真菌群落的植物育种和生态工程(“ myco-工程”)及其相关的微生物群。监测是指对野外菌根真菌的丰度(根和土壤)和多样性进行评估。管理代表了一套复杂的工具,可能会影响菌根的丰度和多样性,包括农艺学实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号