首页> 外文期刊>Renewable & Sustainable Energy Reviews >Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analysis
【24h】

Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analysis

机译:利用生物甲烷的全部潜力在明天的生物经济学中:一个国家案例研究耦合可持续农业强化,新兴沼气技术和能源系统分析

获取原文
获取原文并翻译 | 示例
       

摘要

Here, we demonstrate the applicability of national strategies towards massive biogas deployment, through a case study Denmark. First, a variety of sustainable agricultural intensification measures to produce additional biomass resources were investigated; as a result, it was found that the biomass currently used in Denmark's biorefineries (including biogas) could be tripled without compromising soil carbon and inducing little to no land use changes. The degree to which these resources could be mobilized for the biogas sector was analysed through examining the extremes, here labelled as LOW and HIGH biomass-to-biogas scenarios. The resulting biomethane production was calculated considering three combinations of biogas production and upgrading technologies: (i) conventional biogas production and upgrading technologies; (ii) plants with prolonged retention time and conventional upgrading technologies and (iii) as in (ii), but upgrading via biological methanation of carbon dioxide in the biogas, using renewable hydrogen. These scenarios revealed a biomethane potential of 24-111 PJ y(-1). The key finding of our study is that only the extreme deployment measures, in terms of biomass and technology, allowed to fulfill the emerging gas demands, namely buffering the deficits from fluctuating power and transport (light and heavy-duty vehicles, urban buses, coaches), quantified at 95 PJ y(-1). Yet, just harnessing the full sustainable potential of animal manure, straw and perennial grass allows to supply half of this demand. In the LOW and HIGH biomass scenarios, doubling the retention time brought an increased methane production of 20% (energy-wise), while this increase was 87% when methanation was added.
机译:在这里,我们通过案例研究丹麦展示了国家战略对大规模沼气部署的适用性。首先,研究了各种可持续的农业集中措施,以产生额外的生物量资源;结果,发现目前在丹麦的生物料理(包括沼气)中使用的生物量可能会增加三倍,而不会损害土壤碳,并且诱导没有土地使用的变化。通过检查极端,在这里标记为低和高生物量对沼气情景,分析了这些资源可以为沼气部门调动沼气部门的程度。考虑到沼气生产和升级技术的三种组合来计算所得的生物甲烷生产:(i)传统的沼气生产和升级技术; (ii)具有延长的保留时间和常规升级技术的植物和(iii),如(ii)中,但使用沼气中的二氧化碳的生物甲烷化,使用可再生氢气升级。这些情景显示出24-111 pj y(-1)的生物甲烷电位。我们的研究的关键发现是,只有在生物质和技术方面只有极端部署措施,允许履行新兴的气体需求,即缓冲来自波动动力和运输的缺陷(轻型和重型车辆,城市公共汽车,教练),在95 pj y(-1)定量。然而,只需利用动物粪便,稻草和多年生草的全部可持续潜力允许提供这一需求的一半。在低和高的生物量方案中,保留时间加倍,使甲烷产量增加了20%(能量明智),而加入甲烷化时这种增加为87%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号