首页> 外文期刊>Frontiers in Plant Science >5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley
【24h】

5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

机译:5-氮杂胞苷通过减少总体DNA甲基化来促进小孢子胚胎发生的起始,但阻止随后油菜籽和大麦中胚胎的发育

获取原文
           

摘要

Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare . This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.
机译:小孢子通过体外向胚胎发生的应激而重新编程。该过程是育种获得双单倍体植物的重要工具。 DNA甲基化是主要的表观遗传修饰,可改变分化和增殖。我们已经显示了小孢子重编程过程中全局DNA甲基化的变化。 5-氮杂胞苷(AzaC)无法甲基化,导致DNA低甲基化。 AzaC是研究DNA动力学的有用脱甲基剂,在小孢子胚胎发生中有潜在的应用。这项工作分析了短期和长期的AzaC处理对双子叶植物甘蓝型油菜和单子叶植物大麦的两种小孢子胚胎发生的起始和进展的影响。这涉及对前胚和胚胎产生的定量分析,DNA甲基化,5-甲基-脱氧胞苷(5mdC)免疫荧光和共聚焦显微镜的定量分析,以及通过光镜和电子显微镜对染色质组织的分析(缩合/缩合)。与未处理的胚胎相比,四天的AzaC处理(2.5μM)增加了胚胎诱导,与DNA甲基化降低,修饰的5mdC和异染色质模式相关的响应。相比之下,更长的AzaC处理会减少胚胎的产生。在两个物种中都发现了相似的效果,这表明DNA脱甲基促进了小孢子重编程,全能获得和胚发生的开始,而胚胎分化需要从头进行DNA甲基化,并被AzaC阻止。这表明DNA甲基化在抑制小孢子重编程和可能的全能获得中的作用。结果为表观遗传修饰在小孢子胚胎发生中的作用提供了新的见解,并暗示了抑制剂(如AzaC)在生物技术和育种计划中提高工艺效率的潜在益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号