首页> 外文期刊>Frontiers in Plant Science >Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits
【24h】

Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits

机译:社论:新的多基因座GWAS方法在复杂性状遗传解剖中的应用

获取原文
           

摘要

Since the establishment of the mixed linear model (MLM) method for genome-wide association studies (GWAS) by Zhang et al. ( 2005 ) and Yu et al. ( 2006 ), a series of new MLM-based methods have been proposed (Feng et al., 2016 ). These methods have been widely used in genetic dissection of complex and omics-related traits ( Figure 1 ), especially in conjunction with the development of advanced genomic sequencing technologies. However, most existing methods are based on single marker association in genome-wide scans with population structure and polygenic background controls. To control false positive rate, Bonferroni correction for multiple tests is frequently adopted. This stringent correction results in the exclusion of important loci, especially for large experimental error inherent in field experiments of crop genetics. To address this issue, multi-locus GWAS methodologies have been recommended, i.e., mrMLM (Wang et al., 2016 ), ISIS EM-BLASSO (Tamba et al., 2017 ), pLARmEB (Zhang et al., 2017 ), FASTmrEMMA (Wen et al., 2018a ), pKWmEB (Ren et al., 2018 ), and FASTmrMLM (Zhang and Tamba, 2018 ). Here we summarize their advantages and potential limitations for using these methods ( Table 1 ). Figure 1 The pipeline framework of genome-wide association studies and their application. Table 1 Comparison of single- and multi-locus GWAS methodologies. Single-locus GWAS Multi-locus GWAS ~(*) QTN detection power Low High P -value threshold of significant QTN 5 × 10 ~(?8) (human genetics for common variants) 0.05/ m ~ 1/ m (crop genetics; m is no. of markers) 2 × 10 ~(?4) (or LOD = 3.0) False positive rate Low (with Bonferroni correction) Low (with LOD = 3.0 or P = 2 × 10 ~(?4)) Multiple test correction Yes No Polygenic background control Yes Yes (First step); No (Second step; all the potential genes have been included) Population structure control Yes Yes SNP effect Fixed Random No. of variance components Two (polygenic background and residual variances) Three (QTN, polygenic background and residual variances; First step) Multi-locus genetic model No Yes (second step) How to reduce no. of variances a) To fix the polygenic-to-residual variance ratio b) To estimate residual variance along with fixed effects a) To fix the polygenic-to-residual variance ratio (1~5) b) To estimate residual variance along with fixed effects (1~4) c) Let the number of non-zero eigenvalues of X C X C T be one (3~5) d) To whiten the covariance matrix of polygenic K and noise (3~5) Running time Fast (GEMMA & EMMAX), slow (EMMA) Fast (2, 6), slow (5), moderate (others) Software GEMMA: http://www.xzlab.org/software.html EMMAX: http://genetics.cs.ucla.edu/emmax mrMLM: https://cran.r-project.org/web/packages/mrMLM/index.html mrMLM.GUI: https://cran.r-project.org/web/packages/mrMLM.GUI/index.html Parallel calculation with multiple CPU; quickly read big datasets; graphical user interface (GUI); To continuously run the programs for multiple traits * mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO are marked by 1, 2, 3, 4, 5, and 6 respectively . Multi-locus Genome-wide Association Studies for Complex Traits Comparison of GWAS Methodologies Our methodological papers have showed their advantages in terms of quantitative trait nucleotide (QTN) detection power and QTN effect estimation accuracy over existing methods (Wang et al., 2016 ; Tamba et al., 2017 ; Zhang et al., 2017 ; Ren et al., 2018 ; Wen et al., 2018a ). This conclusion has been echoed in a number of other applied studies in this Research Topic. For example, Ma et al. and Zhang et al. indicated that mrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO outperform the R package GAPIT, with ISIS EM-BLASSO being the most powerful multi-locus approach. Xu et al. compared one single-locus method (GEMMA) and three multi-locus methods (FASTmrEMMA, FarmCPU, and LASSO) in the genetic dissection of starch pasting properties in maize. As a result, FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19) and LASSO (12), and GEMMA detected the least QTNs (7). In the genetic dissection of salt tolerance traits in rice, Cui et al. compared all the six multi-locus approaches and identified the most co-detected QTNs from ISIS EM-BLASSO. Peng et al. used our six multi-locus GWAS methods to analyze 20 free amino acid levels in kernels of bread wheat ( Triticum aestivum L.) and found the reliability and complementarity of these methods. In the detection of small-effect QTNs for fiber-quality related traits in the early-maturity varieties of upland cotton, Su et al. claimed that the multi-locus GWAS methods are more powerful and robust than the MLM method in TASSEL v5.0. Hou et al. demonstrated that 20 QTNs were associated with drought stress response using mrMLM, while three QTNs were associated with resistance to Verticillium wilt using EMMAX. Although the above studies have shown the advantages of multi-locus GWAS methods over single-locus GWAS methods, Chang et al. , He et al. ,
机译:自Zhang等人建立用于全基因组关联研究(GWAS)的混合线性模型(MLM)方法以来。 (2005)和Yu等。 (2006年),提出了一系列基于传销的新方法(Feng等人,2016年)。这些方法已广泛用于复杂和组学相关性状的遗传解剖中(图1),尤其是与先进基因组测序技术的发展相结合。但是,大多数现有方法是基于具有种群结构和多基因背景对照的全基因组扫描中的单个标记关联。为了控制假阳性率,经常采用多次测试的Bonferroni校正。这种严格的校正导致排除了重要的基因座,尤其是对于作物遗传学现场试验中固有的较大实验误差。为了解决这个问题,已经推荐了多位置GWAS方法,即mrMLM(Wang等,2016),ISIS EM-BLASSO(Tamba等,2017),pLARmEB(Zhang等,2017),FASTmrEMMA (Wen等,2018a),pKWmEB(Ren等,2018)和FASTmrMLM(Zhang and Tamba,2018)。在这里,我们总结了使用这些方法的优势和潜在局限性(表1)。图1:全基因组关联研究的流水线框架及其应用。表1单场所和多场所GWAS方法的比较。单基因座GWAS多基因座GWAS〜(*)QTN检测功率低QTN的高P值阈值5×10〜(?8)(常见变异的人类遗传学)0.05 / m〜1 / m(作物遗传学; m为标记数)2×10〜(?4)(或LOD = 3.0)假阳性率低(通过Bonferroni校正)低(LOD = 3.0或P = 2×10〜(?4))多重测试更正是否多基因背景对照是是(第一步);否(第二步;已包括所有潜在基因)种群结构控制是是SNP效应固定的随机方差分量数量两个(多基因背景和残差);三个(QTN,多基因背景和残差;第一步)多基因座遗传模型否是(第二步)如何减少否。方差分析a)固定多基因残差方差比b)估计固定方差的残差方差a)固定多基因残差的方差比(1〜5)b)固定残差方差的估计方差效果(1〜4)c)将XCXCT的非零特征值的数量设为1(3〜5)d)使多基因K和噪声的协方差矩阵变白(3〜5)快速运行时间(GEMMA和EMMAX) ,慢(EMMA),快(2、6),慢(5),中(其他)软件GEMMA:http://www.xzlab.org/software.html EMMAX:http://genetics.cs.ucla.edu / emmax mrMLM:https://cran.r-project.org/web/packages/mrMLM/index.html mrMLM.GUI:https://cran.r-project.org/web/packages/mrMLM.GUI/index .html具有多个CPU的并行计算;快速读取大型数据集;图形用户界面(GUI);要连续运行具有多个特征的程序,请分别用1、2、3、4、5和6标记mrMLM,FASTmrMLM,FASTmrEMMA,pLARmEB,pKWmEB和ISIS EM-BLASSO。 GWAS方法比较复杂性状的多基因座全基因组关联研究我们的方法论论文已显示出其在定量性状核苷酸(QTN)检测能力和QTN效果估计准确性方面优于现有方法的优势(Wang等人,2016; Tamba等人,2017年; Zhang等人,2017年; Ren等人,2018年; Wen等人,2018a)。该结论在该研究主题的许多其他应用研究中得到了回应。例如,Ma等。和张等。指出mrMLM,FASTmrEMMA,pLARmEB和ISIS EM-BLASSO优于R包GAPIT,其中ISIS EM-BLASSO是最强大的多位点方法。徐等。在玉米淀粉糊化特性的遗传剖析中,比较了一种单基因座方法(GEMMA)和三种多基因座方法(FASTmrEMMA,FarmCPU和LASSO)。结果,FASTmrEMMA检测到最多的QTN(29),其次是FarmCPU(19)和LASSO(12),GEMMA检测到最少的QTN(7)。在水稻耐盐性状的遗传解剖中,Cui等人。比较了所有六种多场所方法,并从ISIS EM-BLASSO中识别出最多被共检测到的QTN。 Peng等。用我们的六种多位点GWAS方法分析了面包小麦(Triticum aestivum L.)仁中20种游离氨基酸水平,发现了这些方法的可靠性和互补性。 Su等人在检测棉花早期成熟品种中纤维品质相关性状的小效QTN时发现。据称,多场所GWAS方法比TASSEL v5.0中的MLM方法更强大和强大。侯等人。结果表明,使用mrMLM可将20个QTN与干旱胁迫响应相关联,而使用EMMAX可证明三个QTN与黄萎病抗性相关。尽管以上研究显示了多位点GWAS方法比单位点GWAS方法的优势,但Chang等人。 ,何等。 ,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号