...
首页> 外文期刊>Frontiers in Physiology >The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms
【24h】

The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms

机译:自主神经系统通过cAMP-PKA依赖性和独立的耦合钟起搏器细胞机制调节心率

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sinoatrial nodal cells (SANCs) generate spontaneous action potentials (APs) that control the cardiac rate. The brain modulates SANC automaticity, via the autonomic nervous system, by stimulating membrane receptors that activate (adrenergic) or inactivate (cholinergic) adenylyl cyclase (AC). However, these opposing afferents are not simply additive. We showed that activation of adrenergic signaling increases AC-cAMP/PKA signaling, which mediates the increase in the SANC AP firing rate (i.e., positive chronotropic modulation). However, there is a limited understanding of the underlying internal pacemaker mechanisms involved in the crosstalk between cholinergic receptors and the decrease in the SANC AP firing rate (i.e., negative chronotropic modulation). We hypothesize that changes in AC-cAMP/PKA activity are crucial for mediating either decrease or increase in the AP firing rate and that the change in rate is due to both internal and membrane mechanisms. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, PKA activity and AP firing rate were tightly linked in response to either adrenergic receptor stimulation (by isoproterenol, ISO) or cholinergic stimulation (by carbachol, CCh). To identify the main molecular targets that mediate between PKA signaling and pacemaker function, we developed a mechanistic computational model. The model includes a description of autonomic-nervous receptors, post- translation signaling cascades, membrane molecules, and internal pacemaker mechanisms. Yielding results similar to those of the experiments, the model simulations faithfully reproduce the changes in AP firing rate in response to CCh or ISO or a combination of both (i.e., accentuated antagonism). Eliminating AC-cAMP-PKA signaling abolished the core effect of autonomic receptor stimulation on the AP firing rate. Specifically, disabling the phospholamban modulation of the SERCA activity resulted in a significantly reduced effect of CCh and a failure to increase the AP firing rate under ISO stimulation. Directly activating internal pacemaker mechanisms led to a similar extent of changes in the AP firing rate with respect to brain receptor stimulation. Thus, Ca~(2+)and cAMP/PKA-dependent phosphorylation limits the rate and magnitude of chronotropic changes in the spontaneous AP firing rate.
机译:窦房结细胞(SANC)产生控制心律的自发动作电位(AP)。大脑通过刺激激活(肾上腺素)或失活(胆碱能)腺苷酸环化酶(AC)的膜受体,通过自主神经系统调节SANC自动化。然而,这些相反的传入不是简单地相加的。我们显示肾上腺素信号传导的激活增加了AC-cAMP / PKA信号传导,这介导了SANC AP发射速率的增加(即正变时性调制)。然而,对于胆碱能受体之间的串扰和SANC AP发射速率降低(即负变时性调制)的潜在内部起搏器机制了解甚少。我们假设AC-cAMP / PKA活性的变化对于介导AP放电速率的降低或增加至关重要,并且速率的变化是由于内部和膜机制引起的。在培养的表达FRET传感器AKAR3的腺病毒感染的成年兔起搏器细胞中,PKA活性和AP激发速率紧密联系在一起,以响应肾上腺素能受体刺激(异丙肾上腺素,ISO)或胆碱能刺激(卡巴胆碱,CCh)。为了确定介导PKA信号和起搏器功能之间的主要分子靶标,我们开发了一种机械计算模型。该模型包括对自主神经受体,翻译后信号传导级联,膜分子和内部起搏器机制的描述。产生与实验相似的结果,模型模拟如实再现了响应于CCh或ISO或两者的组合(即加剧的拮抗作用)的AP发射速率的变化。消除AC-cAMP-PKA信号消除了自主神经受体刺激对AP放电速率的核心作用。具体而言,禁用SERCA活性的磷酸lamban调节会导致CCh的效果显着降低,并且在ISO刺激下无法提高AP发射速率。就大脑受体刺激而言,直接激活内部起搏器机制导致AP放电速率的变化程度相似。因此,Ca〜(2+)和cAMP / PKA依赖性磷酸化限制了自发AP发射速率的变时性变化的速率和幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号