首页> 外文期刊>Frontiers in Molecular Neuroscience >The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors
【24h】

The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors

机译:Kv7 / M钾通道在伤害感受器中控制异位放电的作用

获取原文
           

摘要

Peripheral nociceptive neurons encode and convey injury-inducing stimuli toward the central nervous system. In normal conditions, tight control of nociceptive resting potential prevents their spontaneous activation. However, in many pathological conditions the control of membrane potential is disrupted, leading to ectopic, stimulus-unrelated firing of nociceptive neurons, which is correlated to spontaneous pain. We have investigated the role of K_(V)7/M channels in stabilizing membrane potential and impeding spontaneous firing of nociceptive neurons. These channels generate low voltage-activating, noninactivating M-type K~(+)currents (M-current, I _( M )), which control neuronal excitability. Using perforated-patch recordings from cultured, rat nociceptor-like dorsal root ganglion neurons, we show that inhibition of M-current leads to depolarization of nociceptive neurons and generation of repetitive firing. To assess to what extent the M-current, acting at the nociceptive terminals, is able to stabilize terminals' membrane potential, thus preventing their ectopic activation, in normal and pathological conditions, we built a multi-compartment computational model of a pseudo-unipolar unmyelinated nociceptive neuron with a realistic terminal tree. The modeled terminal tree was based on the in vivo structure of nociceptive peripheral terminal, which we assessed by in vivo multiphoton imaging of GFP-expressing nociceptive neuronal terminals innervating mice hind paw. By modifying the conductance of the K_(V)7/M channels at the modeled terminal tree (terminal g_(K_(V)7/M)) we have found that 40% of the terminal g_(K_(V)7/M)conductance is sufficient to prevent spontaneous firing, while ~75% of terminal g_(K_(V)7/M)is sufficient to inhibit stimulus induced activation of nociceptive neurons. Moreover, we showed that terminal M-current reduces susceptibility of nociceptive neurons to a small fluctuations of membrane potentials. Furthermore, we simulated how the interaction between terminal persistent sodium current and M-current affects the excitability of the neurons. We demonstrated that terminal M-current in nociceptive neurons impeded spontaneous firing even when terminal Na_((V))1.9 channels conductance was substantially increased. On the other hand, when terminal g_(K_(V)7/M)was decreased, nociceptive neurons fire spontaneously after slight increase in terminal Na_((V))1.9 conductance. Our results emphasize the pivotal role of M-current in stabilizing membrane potential and hereby in controlling nociceptive spontaneous firing, in normal and pathological conditions.
机译:周围伤害感受神经元编码并向中枢神经系统传递诱导损伤的刺激。在正常情况下,严格控制伤害性休息电位可防止其自发激活。但是,在许多病理条件下,膜电位的控制被破坏,导致与伤害性神经元发生异位,与刺激无关的放电,这与自发性疼痛有关。我们研究了K_(V)7 / M通道在稳定膜电位和阻止伤害性神经元自发放电中的作用。这些通道产生低电压激活,非灭活的M型K〜(+)电流(M电流,I _(M)),从而控制神经元的兴奋性。使用来自培养的大鼠伤害感受器样背根神经节神经元的穿孔补丁录音,我们表明抑制M电流导致伤害性神经元去极化和重复放电。为了评估作用在伤害感受末端的M电流能够在多大程度上稳定末端的膜电位,从而防止其在正常和病理条件下的异位激活,我们建立了一个伪单极的多室计算模型具有真实末端树的无髓伤害感受神经元。建模的末端树是基于伤害性末梢末梢的体内结构,我们通过表达GFP的伤害性神经末梢对小鼠后爪的体内多光子成像进行了评估。通过在建模的终端树(终端g_(K_(V)7 / M))处修改K_(V)7 / M通道的电导,我们发现终端g_(K_(V)7 / M的40%电导足以阻止自发放电,而末端g_(K_(V)7 / M)的〜75%足以抑制刺激性伤害性神经元的激活。此外,我们表明终端M电流降低了伤害性神经元对膜电位的小波动的敏感性。此外,我们模拟了终端持续钠电流和M电流之间的相互作用如何影响神经元的兴奋性。我们证明,即使当终端Na _((V))1.9通道电导显着增加时,伤害性神经元中的终端M电流仍会阻止自发放电。另一方面,当末端g_(K_(V)7 / M)降低时,伤害性神经元会在末端Na _((V))1.9电导略有增加后自发激发。我们的研究结果强调了在正常和病理条件下,M电流在稳定膜电位以及从而控制伤害性自发放电方面的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号