首页> 外文期刊>Frontiers in Mechanical Engineering >A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process
【24h】

A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process

机译:高能激光表面合金化过程中传输现象建模的数值策略比较

获取原文
获取外文期刊封面目录资料

摘要

A comparative assessment is done on the effectiveness of some developed and reported macroscopic and mesoscopic models deployed for addressing the three-dimensional thermo-fluidic transport during high power laser surface alloying process. The macroscopic models include the most celebrated k-ε turbulence model and the large eddy simulation (LES) model, whereas a kinetic theory based lattice Boltzmann (LB) approach is invoked under the mesoscopic paradigm. The time dependent Navier-Stokes equations are transformed into the k-? turbulence model by performing the Reynolds averaging technique, whereas a spatial filtering operation is used to produce the LES model. The models are suitably modified to address the turbulent melt-pool convection by using a modified eddy viscosity expression including a damping factor in the form of square root of the liquid fraction. The LB scheme utilizes three separate distribution functions to monitor the underlying hydrodynamic, thermal and compositional fields. Accordingly, the kinematic viscosity, thermal and mass diffusivities are adjusted independently. A single domain fixed-grid enthalpy-porosity approach is utilized to model the phase change phenomena in conjunction with an appropriate enthalpy updating closure scheme. The performance of these models are recorded by capturing the characteristic nature of the thermo-fluidic transport during the laser material processing. The maximum values of the pertinent parameters in the computational domain obtained from several modeling efforts are compared in order to assess their capabilities. The comparison shows that the prediction from the k-ε turbulence model is higher than the LES and LB models. Additionally, the results from all three models are compared with the available experimental results in the form of dimensionless composition of the alloyed layer along the dimensionless depth of the pool. The comparison reveals that the LB and the LES approaches are better than the k-ε turbulence approach in reproducing the experimental results.
机译:对一些已开发和报告的宏观和介观模型的有效性进行了比较评估,这些模型用于解决高功率激光表面合金化过程中的三维热流体传输。宏观模型包括最著名的k-ε湍流模型和大涡模拟(LES)模型,而在介观范式下调用了基于动力学理论的格子Boltzmann(LB)方法。时间相关的Navier-Stokes方程被转换为k-?。通过执行雷诺平均技术建立湍流模型,而空间滤波操作用于生成LES模型。通过使用修改后的涡流粘度表达式(包括液体部分平方根形式的阻尼因子)对模型进行适当修改,以解决湍流熔池对流问题。 LB方案利用三个独立的分布函数来监视潜在的流体动力,热力和成分场。因此,运动粘度,热和质量扩散率是独立调节的。结合适当的焓更新封闭方案,使用单域固定网格焓-孔隙率方法对相变现象进行建模。这些模型的性能通过捕获激光材料加工过程中热流体传输的特性来记录。比较从几次建模工作中获得的计算域中相关参数的最大值,以评估其功能。比较表明,来自k-ε湍流模型的预测要高于LES和LB模型。此外,将所有三个模型的结果与可用实验结果进行了比较,这些结果的形式是沿着熔池的无量纲深度的合金层无量纲组成。比较表明,LB和LES方法在再现实验结果方面比k-ε湍流方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号