首页> 外文期刊>Frontiers in Physiology >Byssus Structure and Protein Composition in the Highly Invasive Fouling Mussel Limnoperna fortunei
【24h】

Byssus Structure and Protein Composition in the Highly Invasive Fouling Mussel Limnoperna fortunei

机译:贻贝高度侵袭性结垢的结节结构和蛋白质组成 Limnoperna fortunei

获取原文
       

摘要

Biofouling mediated by byssus adhesion in invasive bivalves has become a global environmental problem in aquatic ecosystems, resulting in negative ecological and economic consequences. Previous studies suggested that mechanisms responsible for byssus adhesion largely vary among bivalves, but it is poorly understood in freshwater species. Understanding of byssus structure and protein composition is the prerequisite for revealing these mechanisms. Here, we used multiple methods, including scanning electron microscope, liquid chromatography–tandem mass spectrometry, transcriptome sequencing, real-time quantitative PCR, inductively coupled plasma mass spectrometry, to investigate structure, and protein composition of byssus in the highly invasive freshwater mussel Limnoperna fortunei . The results indicated that the structure characteristics of adhesive plaque, proximal and distal threads were conducive to byssus adhesion, contributing to the high biofouling capacity of this species. The 3,4-dihydroxyphenyl-α-alanine (Dopa) is a major post-transnationally modification in L. fortunei byssus. We identified 16 representative foot proteins with typical repetitive motifs and conserved domains by integrating transcriptomic and proteomic approaches. In these proteins, Lfbp-1, Lffp-2, and Lfbp-3 were specially located in foot tissue and highly expressed in the rapid byssus formation period, suggesting the involvement of these foot proteins in byssus production and adhesion. Multiple metal irons, including Ca~(2+), Mg~(2+), Zn~(2+), Al~(3+), and Fe~(3+), were abundant in both foot tissue and byssal thread. The heavy metals in these irons may be directly accumulated by L. fortunei from surrounding environments. Nevertheless, some metal ions (e.g., Ca~(2+)) corresponded well with amino acid preferences of L. fortunei foot proteins, suggesting functional roles of these metal ions by interacting with foot proteins in byssus adhesion. Overall, this study provides structural and molecular bases of adhesive mechanisms of byssus in L. fortunei , and findings here are expected to develop strategies against biofouling by freshwater organisms.
机译:由侵袭性双壳类动物的粘虫附着引起的生物污染已成为水生生态系统中的全球性环境问题,造成了负面的生态和经济后果。先前的研究表明,双壳类动物引起粘膜粘连的机制差异很大,但在淡水物种中了解甚少。了解囊肿的结构和蛋白质组成是揭示这些机制的前提。在这里,我们使用了多种方法,包括扫描电子显微镜,液相色谱-串联质谱法,转录组测序,实时定量PCR,电感耦合等离子体质谱法,研究了高侵袭性淡水贻贝Limnoperna中的菌丝的结构和蛋白质组成。财富。结果表明,斑块,近端和远端螺纹的结构特征有利于结膜粘连,有助于该菌的高生物积垢能力。 3,4-二羟基苯基-α-丙氨酸(多巴)是在世界乳杆菌中的主要跨国后修饰。我们通过整合转录组学和蛋白质组学方法,鉴定了具有典型重复基序和保守结构域的16个代表性足蛋白。在这些蛋白质中,Lfbp-1,Lffp-2和Lfbp-3特别位于足部组织中,并在快速的结节形成期高表达,表明这些足蛋白参与结节的产生和粘附。足部组织和基底线中都含有多种金属铁,包括Ca〜(2 +),Mg〜(2 +),Zn〜(2 +),Al〜(3+)和Fe〜(3+)。 。这些铁中的重金属可能会被L. fortunei从周围环境直接积累。然而,一些金属离子(例如,Ca〜(2+))与福氏乳杆菌脚蛋白的氨基酸偏好很好地对应,表明这些金属离子通过与脚蛋白相互作用在粘膜粘连中发挥功能作用。总的来说,这项研究提供了福寿螺中比目鱼黏附机制的结构和分子基础,并且有望在此发现开发针对淡水生物污染生物的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号