...
首页> 外文期刊>Frontiers in Neural Circuits >Cortical Layer and Spectrotemporal Architecture of Epileptiform Activity in vivo in a Mouse Model of Focal Cortical Malformation
【24h】

Cortical Layer and Spectrotemporal Architecture of Epileptiform Activity in vivo in a Mouse Model of Focal Cortical Malformation

机译:局灶性皮层畸形的小鼠模型中癫痫样活动的皮质层和光谱时结构体内。

获取原文
           

摘要

Our objective is to examine the layer and spectrotemporal architecture and laminar distribution of high-frequency oscillations (HFOs) in a neonatal freeze lesion model of focal cortical dysplasia (FCD) associated with a high prevalence of spontaneous spike-wave discharges (SWDs). Electrophysiological recording of local field potentials (LFPs) in control and freeze lesion animals were obtained with linear micro-electrode arrays to detect presence of HFOs as compared to changes in spectral power, signal coherence, and single-unit distributions during “hyper-excitable” epochs of anesthesia-induced burst-suppression (B-S). Result were compared to HFOs observed during spontaneous SWDs in animals during sleep. Micro-electrode array recordings from the malformed cortex indicated significant increases in the presence of HFOs above 100 Hz and associated increases in spectral power and altered LFP coherence of recorded signals across cortical lamina of freeze-lesioned animals with spontaneous bursts of high-frequency activity, confined predominately to granular and supragranular layers. Spike sorting of well-isolated single-units recorded from freeze-lesioned cortex indicated an increase in putative excitatory cell activity in the outer cortical layers that showed only a weak association with HFOs while deeper inhibitory units were strongly phase-locked to high-frequency ripple (HFR) oscillations (300–800 Hz). Both SWDs and B-S show increases in HFR activity that were phase-locked to the high-frequency spike pattern occurring at the trough of low frequency oscillations. The spontaneous cyclic spiking of cortical inhibitory cells appears to be the driving substrate behind the HFO patterns associated with SWDs and a hyperexcitable supragranular layer near the malformed cortex may play a key role in epileptogenesis in our model. These data, derived from a mouse model with a distinct focal cortical malformation, support recent clinical data that HFOs, particularly fast ripples, is a biomarker to help define the cortical seizure zone, and provide limited insights toward understanding cellular level changes underlying the HFOs.
机译:我们的目的是研究与局灶性皮层发育不良(FCD)有关的自发尖峰波放电(SWD)患病率较高的新生儿冷冻病变模型中的高频振荡(HFO)的层和光谱时结构以及层流分布。使用线性微电极阵列在对照和冰冻病变动物中获得了局部电势(LFP)的电生理记录,以检测HFO的存在,与“超兴奋”期间的光谱功率,信号相干性和单单位分布的变化相比麻醉引起的猝发抑制(BS)的时代。将结果与动物自发性SWD期间观察到的HFO进行比较。畸形皮层的微电极阵列记录表明,存在高于100 Hz的HFO时显着增加,并伴随着自发性高频活动爆发的冻害动物的整个皮质层中的信号跨谱功率的增加和频谱信号的改变以及LFP相干性的改变,主要限于颗粒层和颗粒上层。从冷冻损伤皮层记录的良好隔离的单个单元的尖峰分选表明,外皮层中假定的兴奋性细胞活性增加,仅显示与HFO的弱关联,而更深的抑制单元强烈锁相到高频波纹(HFR)振荡(300–800 Hz)。 SWD和B-S均显示出HFR活性的增加,它们与在低频振荡波谷处发生的高频尖峰模式锁相。皮层抑制细胞的自发周期性尖峰似乎是与SWD相关的HFO模式背后的驱动底物,并且在畸形皮层附近的过度兴奋性颗粒上层可能在我们模型的癫痫发生中起关键作用。这些数据源自具有明显局灶性皮质畸形的小鼠模型,支持了最近的临床数据,即HFO(尤其是快速波纹)是有助于确定皮质癫痫发作区域的生物标志物,并且对于了解HFO的细胞水平变化提供的见解有限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号