首页> 外文期刊>Frontiers in Microbiology >Transcriptomic Analysis of Staphylococcus epidermidis Biofilm-Released Cells upon Interaction with Human Blood Circulating Immune Cells and Soluble Factors
【24h】

Transcriptomic Analysis of Staphylococcus epidermidis Biofilm-Released Cells upon Interaction with Human Blood Circulating Immune Cells and Soluble Factors

机译:与人体血液循环免疫细胞和可溶性因子相互作用的表皮葡萄球菌生物膜释放细胞的转录组学分析。

获取原文
           

摘要

Background The colonization of indwelling medical devices by biofilm-forming bacteria is one of the major causes of healthcare-associated infections (Percival et al., 2015 ). Staphylococcus epidermidis , a biofilm-forming commensal bacterium that inhabits human skin and mucosae, is considered one of most important causes of medical devices-related infections, being particularly associated with the use of intravascular catheters (Mack et al., 2013 ). Although S. epidermidis biofilms are classically associated with the development of chronic infections (Costerton et al., 1999 ), the release of cells from the biofilm has been associated with onset of acute infections such as embolic events of endocarditis (Pitz et al., 2011 ), bacteremia, or even septicemia (Cole et al., 2016 ). Bloodstream infections caused by S. epidermidis are typically indolent and difficult to eradicate significantly increasing patient's morbidity (Kleinschmidt et al., 2015 ) and mortality among immunocompromised (Khashu et al., 2006 ) and immunosuppressed patients (Bender and Hughes, 1980 ). In addition, the costs associated with the diagnosis and treatment of these secondary infections is estimated to be approximately $20,000 per occurrence (Kilgore and Brossette, 2008 ). Henceforth, it is imperative to redefine strategies for the management of the pathologic events associated with biofilm disassembly. Since bloodstream infections are one of the most frequent complications caused by S. epidermidis biofilm disassembly (Cole et al., 2016 ), a comprehensive analysis of the interplay between S. epidermidis biofilm-released cells (BRC) and hosts' blood components would be invaluable. Herein, as the first step toward the understanding of this interaction, we have characterized, using RNA sequencing (RNAseq) technology, the transcriptome of S. epidermidis BRC upon interaction with whole human blood, polymorphonuclear, or mononuclear leukocytes and plasma. Materials and methods Ethics statement Human blood was collected from healthy adult volunteers, under a human subject's protocol approved by the Institutional Review Board of the University of Minho (SECVS 002/2014). Furthermore, this procedure was performed in agreement with Helsinki declaration and Oviedo convention. All donors gave written consent before blood collection. Bacteria and growth conditions S. epidermidis strain 9142, isolated from a blood culture (Mack et al., 1992 ), was used for this study. BRC were obtained using a fed-batch system in the presence of Tryptic Soy Broth (TSB) supplemented with 0.65% glucose and under agitation conditions, as detailed elsewhere (Fran?a et al., 2016 ). BRC cells were collected from 12 different originating biofilms and pooled together to decrease the variability inherent to biofilm growth (Sousa et al., 2014 ). After 10 s sonication at 33% amplitude (Cole-Parmer 750-Watt Ultrasonic Homogenizer 230 VAC, IL, USA), the concentration of BRC was adjusted to 1 × 10~(9)total cells/mL, by flow cytometry (EC800, Sony Biotechnology Inc., CA, USA), using SYBR Green (Invitrogen, CA, USA) and propidium iodide (Sigma, MO, USA) staining as previously optimized (Cerca et al., 2011 ). Blood collection and fractioning Peripheral blood was collected into BD Vacutainer? tubes coated with lithium heparin (BD?, NJ, USA). Plasma was separated from the cellular fraction by centrifuging whole blood at 1440 g for 20 min at 4°C. Mononuclear (MN) leukocytes were purified from whole blood using Histopaque 1077 gradient (Sigma) as indicated by the manufacturer. Thereafter, the mononuclear cells-depleted pellet resultant from the Histopaque 1077 gradient was incubated with 1.5% (v/v) dextran solution during 35 min, at room temperature, in order to separate polymorphonuclear (PMN) cells from erythrocytes. PMN cells (present in the supernatant) were then transferred in to a new tube and harvested by centrifugation at 450 g for 15 min at 4°C. Both PMN and MN cells were incubated with water for 30 s to lyse the remaining erythrocytes and, after readjusting the isotonic conditions by adding 10 × PBS, leukocytes were collected by centrifugation at 200 g for 15 min at 4°C. Finally, leukocytes were suspended in 0.5 mL of donor's plasma and samples purity and viability determined by flow cytometry (EC800, Sony) using, respectively, CD15 (PMN) and CD3 (MN) (eBioscience, CA, USA) and propidium iodide staining (5 μg/mL, Sigma). Only samples with purity ≥90% and death ≤ 15% were used. The number of PMN and MN cells was determined also by flow cytometry and the concentration adjusted, in donor's plasma, to 1.0 × 10~(6)cells/mL. Co-incubation of bacteria with whole human blood and its circulating immune factors In 2 mL tubes, 100 μL of a suspension of 1 × 10~(9)total BRC/mL were mixed with 900 μL of whole human blood, PMN, or MN at 1.0 × 10~(6)cells/mL, plasma or TSB (containing the same concentration of heparin as blood and its components) and incubated at 80 rpm (in a 10 mm orbit incuba
机译:背景技术形成生物膜的细菌在留置医疗设备中的定殖是医疗保健相关感染的主要原因之一(Percival等人,2015年)。表皮葡萄球菌(Staphylococcus epidermidis)是一种生物膜形成的共生细菌,它居住在人的皮肤和粘膜中,被认为是医疗器械相关感染的最重要原因之一,尤其与使用血管内导管有关(Mack等,2013)。尽管表皮葡萄球菌的生物膜通常与慢性感染的发生有关(Costerton等,1999),但生物膜中细胞的释放与急性感染的发作有关,例如心内膜炎的栓塞事件(Pitz等, 2011年),菌血症甚至败血症(Cole等人,2016年)。表皮葡萄球菌引起的血流感染通常是轻度的,难以根除,大大增加了患者的发病率(Kleinschmidt等人,2015)和免疫功能低下的患者(Khashu等人,2006)和免疫抑制患者的死亡率(Bender和Hughes,1980)。此外,与这些继发感染的诊断和治疗相关的费用估计每次发生约为20,000美元(Kilgore和Brossette,2008年)。今后,必须重新定义与生物膜拆卸相关的病理事件的管理策略。由于血流感染是表皮葡萄球菌生物膜分解引起的最常见并发症之一(Cole等人,2016),因此对表皮葡萄球菌生物膜释放细胞(BRC)与宿主血液成分之间相互作用的全面分析将是无价。在此,作为了解这种相互作用的第一步,我们已经表征了使用RNA测序(RNAseq)技术与人全血,多形核或单核白细胞和血浆相互作用后表皮葡萄球菌BRC的转录组。材料和方法伦理声明人体血液是根据Minho大学机构审查委员会(SECVS 002/2014)批准的人类受试者协议从健康的成年人志愿者那里采集的。此外,按照赫尔辛基宣言和奥维耶多公约的规定执行此程序。所有献血者在采血前均给予书面同意。细菌和生长条件从血液培养物中分离出的表皮葡萄球菌9142菌株(Mack等,1992)用于该研究。如其他地方所述(Fran?a et al。,2016),在添加了0.65%葡萄糖的胰蛋白酶大豆肉汤(TSB)存在下,使用补料分批系统获得了BRC。从12种不同的原始生物膜中收集BRC细胞,并汇集在一起​​以减少生物膜生长所固有的变异性(Sousa等,2014)。在33%的振幅下超声处理10 s(Cole-Parmer 750瓦超声均质器230 VAC,IL,USA)后,通过流式细胞仪(EC800,EC800)将BRC的浓度调节为1×10〜(9)总细胞/ mL。索尼生物技术公司(美国加利福尼亚州)使用先前优化的SYBR Green(美国加利福尼亚州Invitrogen公司)和碘化丙啶(美国密苏里州西格玛)染色(Cerca等人,2011年)。血液收集和分离外周血收集到BD Vacutainer?肝素锂涂层的医用试管(美国新泽西州BD?)。通过在4°C下以1440 g离心全血20分钟,从细胞级分中分离血浆。按照制造商指示,使用Histopaque 1077梯度液(Sigma)从全血中纯化单核(MN)白细胞。此后,在室温下,将35%的Histopaque 1077梯度去除的单核细胞沉淀沉淀与1.5%(v / v)葡聚糖溶液一起温育35分钟,以从红细胞中分离多形核(PMN)细胞。然后将PMN细胞(存在于上清液中)转移到新试管中,并通过在4°C下以450 g离心15分钟进行收获。将PMN和MN细胞均用水孵育30 s,以溶解剩余的红细胞,并在通过添加10×PBS调整等渗条件后,通过在4 g下200 g离心15分钟收集白细胞。最后,将白细胞悬浮在0.5 mL供体血浆中,并分别通过CD15(PMN)和CD3(MN)(eBioscience,CA,USA)和碘化丙锭染色法(流式细胞仪(EC800,Sony))测定样品的纯度和生存力( 5μg/ mL,西格玛)。仅使用纯度≥90%且死亡≤15%的样品。 PMN和MN细胞的数量也通过流式细胞仪确定,并在供体血浆中将浓度调整为1.0×10〜(6)个细胞/ mL。细菌与全血及其循环免疫因子的共孵育在2 mL试管中,将100μL1×10〜(9)总BRC / mL的悬浮液与900μL全血,PMN或MN混合以1.0×10〜(6)细胞/ mL的血浆或TSB(含有与血液及其成分相同浓度的肝素)并以80 rpm孵育(在10 mm轨道孵育中)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号