首页> 外文期刊>Frontiers in Microbiology >Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale
【24h】

Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale

机译:从富含烃的深层页岩中回收的水力压裂液中的微生物代谢和群落动力学

获取原文
           

摘要

Hydraulic fracturing is a prominent method of natural gas production that uses injected, high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale. Upon completion of a well, the fluid returns to the surface (produced water) and contains natural gas, subsurface constituents, and microorganisms ( Barbot et al., 2013 ; Daly et al., 2016 ). While the microbial community of the produced fluids has been studied in multiple gas wells, the activity of these microorganisms and their relation to biogeochemical activity is not well understood. In this experiment, we supplemented produced fluid with ~(13)C-labeled carbon sources (glucose, acetate, bicarbonate, methanol, or methane), and ~(15)N-labeled ammonium chloride in order to isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images of ~(13)C and ~(15)N incorporation in individual cells, while isotope ratio monitoring–gas chromatography–mass spectrometry (IRM–GC–MS) was used to measure ~(13)CO _(2), and ~(13)CH _(4) as metabolic byproducts. Glucose, acetate, and methanol were all assimilated by microorganisms under anoxic conditions. ~(13)CO _(2) production was only observed with glucose as a substrate indicating that catabolic activity was limited to this condition. The microbial communities observed at 0, 19, and 32 days of incubation did not vary between different carbon sources, were low in diversity, and composed primarily of the class Clostridia . The primary genera detected in the incubations, Halanaerobium and Fusibacter , are known to be adapted to harsh physical and chemical conditions consistent with those that occur in the hydrofracturing environment. This study provides evidence that microorganisms in produced fluid are revivable in laboratory incubations and retained the ability to metabolize added carbon and nitrogen substrates.
机译:水力压裂是天然气生产的一种重要方法,它使用注入的高压流体来压裂低渗透性,富含烃的地层,例如页岩。完井后,流体返回地表(产出水)并包含天然气,地下成分和微生物(Barbot等,2013; Daly等,2016)。虽然已在多个气井中研究了采出液的微生物群落,但对这些微生物的活性及其与生物地球化学活性的关系还知之甚少。在该实验中,我们用〜(13)C标记的碳源(葡萄糖,乙酸盐,碳酸氢盐,甲醇或甲烷)和〜(15)N标记的氯化铵补充了采出液,以便同位素地追踪多种微生物的微生物活性。缺氧培养的一天。纳米级二次离子质谱法(NanoSIMS)用于生成单个细胞中〜(13)C和〜(15)N掺入的同位素图像,而同位素比监测–气相色谱–质谱(IRM–GC–MS)测量〜(13)CO _(2)和〜(13)CH _(4)作为代谢副产物。葡萄糖,乙酸盐和甲醇在缺氧条件下均被微生物吸收。仅以葡萄糖为底物观察到〜(13)CO _(2)的产生,表明分解代谢活性限于该条件。在孵化0、19和32天时观察到的微生物群落在不同碳源之间没有差异,多样性较低,并且主要由梭状芽胞杆菌组成。在孵化过程中检测到的主要属,哈拉纳霉菌和Fusibacter已知适合于苛刻的物理和化学条件,与在水力压裂环境中发生的条件一致。这项研究提供了证据,证明所产生的液体中的微生物在实验室培养中是可再生的,并具有代谢添加的碳和氮底物的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号