首页> 外文OA文献 >Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale
【2h】

Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale

机译:从深碳氢化合物富烃的液压压裂液中的微生物代谢和社区动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydraulic fracturing is a prominent method of natural gas production that uses injected, high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale. Upon completion of a well, the fluid returns to the surface (produced water) and contains natural gas, subsurface constituents, and microorganisms (Barbot et al., 2013; Daly et al., 2016). While the microbial community of the produced fluids has been studied in multiple gas wells, the activity of these microorganisms and their relation to biogeochemical activity is not well understood. In this experiment, we supplemented produced fluid with 13C-labeled carbon sources (glucose, acetate, bicarbonate, methanol, or methane), and 15N-labeled ammonium chloride in order to isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images of 13C and 15N incorporation in individual cells, while isotope ratio monitoring–gas chromatography–mass spectrometry (IRM–GC–MS) was used to measure 13CO2, and 13CH4 as metabolic byproducts. Glucose, acetate, and methanol were all assimilated by microorganisms under anoxic conditions. 13CO2 production was only observed with glucose as a substrate indicating that catabolic activity was limited to this condition. The microbial communities observed at 0, 19, and 32 days of incubation did not vary between different carbon sources, were low in diversity, and composed primarily of the class Clostridia. The primary genera detected in the incubations, Halanaerobium and Fusibacter, are known to be adapted to harsh physical and chemical conditions consistent with those that occur in the hydrofracturing environment. This study provides evidence that microorganisms in produced fluid are revivable in laboratory incubations and retained the ability to metabolize added carbon and nitrogen substrates.
机译:水力压裂是天然气生产的一个突出方法使用注射,高压流体到裂缝渗透率较低,富含烃地层如页岩。一旦井完成后,将流体返回到所述表面(生成水),并含有天然气,地下成分和微生物(Barbot等人,2013; Daly等,2016)。而产生的流体的微生物群落已在多个气井进行了研究,这些微生物的活性和其对生物地球化学活性关系还不是很清楚。在这个实验中,我们再补产生具有13C标记的碳源(葡萄糖,乙酸盐,碳酸氢盐,甲醇或甲烷),和15N标记的氯化铵流体以同位素跟踪在多个天微生物活性在缺氧孵育。纳米级二次离子质谱法(NanoSIMS)用于生成13C和个体细胞15N掺入同位素的图像,而同位素比值监测气体色谱 - 质谱法(IRM-GC-MS)来测量13CO2,和13CH4代谢副产品。葡萄糖,乙酸盐,和甲醇都被缺氧条件下的微生物同化。 13CO2生产仅与葡萄糖观察到作为底物,表明分解代谢活性仅限于这种情况。在0,19中观察到的微生物群落,和温育32天没有不同碳源之间变化,均多样性低,主要是类梭菌组成。在孵育,Halanaerobium和Fusibacter检测到的初级属,已知是适合于与那些发生在水力压裂环境一致苛刻的物理和化学条件。本研究提供的证据表明,在所产生的流体的微生物是在试验室温育有救并保留代谢加入碳和氮底物的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号