...
首页> 外文期刊>Frontiers in Computational Neuroscience >Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
【24h】

Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity

机译:具有稀疏连通性的神经网络中峰值动力谱的自洽确定

获取原文
           

摘要

A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.
机译:皮质网络中随机变异性的主要来源是来自许多其他细胞的突触前动作电位的准随机到达。在网络研究以及对网络中嵌入的单个细胞的响应特性的研究中,突触背景输入通常通过泊松脉冲串来近似。但是,在大多数情况下,单元的输出统计数据远非泊松数。这与递归网络中突触前和突触后细胞类似的峰值训练统计数据的假设不一致。在这里,我们针对流行的“整合并发射”神经元类解决了这一问题,并研究了神经尖峰序列的输入和输出谱的自洽统计。代替实际使用大型网络,我们使用迭代方案,在该方案中,我们模拟了多个世代中的单个神经元。在这些世代中的每一代中,神经元都被替代的随机输入所刺激,该替代的随机输入与上一代的输出具有相似的统计量。对于替代输入,我们采用两种截然不同的近似值:(i)具有与上一代中观察到的相同的尖峰间隔密度的更新尖峰序列的叠加,以及(ii)具有与上一代中观察到的功率谱成比例的高斯电流代。对于与网络中的平衡输入相对应的输入参数,更新和高斯迭代过程都迅速收敛,并为自洽的峰值功率谱产生了可比的结果。我们将我们的结果与泄漏的集成并发射神经元的随机稀疏连接网络的大规模仿真进行了比较(Brunel,2000年),并表明在异步状态下,接近网络中平衡的突触输入状态,我们的迭代方案为递归网络中峰值序列的自相关提供了极好的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号