...
首页> 外文期刊>Frontiers in Computational Neuroscience >The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake
【24h】

The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

机译:毛细血管转运时间异质性(CTH)对大脑和葡萄糖类似物摄取的影响:在FDG中的应用以及氧摄取的比较

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.
机译:葡萄糖是大脑中ATP的主要来源,但尚不清楚大脑葡萄糖消耗(CMRglc)与其氧气消耗(CMRO2)结合的程度。对大脑的氧葡萄糖指数OGI = CMRO2 / CMRglc的测量表明,其氧摄入量足以满足氧化磷酸化作用。尽管如此,在功能激活过程中和某些疾病状态下,尽管脑血流(CBF)会输送足够的氧气,但似乎有氧组织会产生乳酸,即所谓的有氧糖酵解。 OGI测量又取决于方法,因为基于葡萄糖类似物摄取的估计取决于达到CMRglc的所谓集总常数(LC)。毛细血管运输时间异质性(CTH)被认为会在功能激活过程中发生变化,并在某些疾病状态下发生变化,从而影响血液中氧气的提取效率。我们开发了一个三室的葡萄糖提取模型,以检查CTH是否也会影响葡萄糖向脑组织的提取。然后,我们将此模型与以前的氧气提取模型结合起来,以研究在某些条件下葡萄糖和氧气的提取是否可能有利于非氧化性葡萄糖代谢。我们的模型预测,血浆中的葡萄糖浓度变化很大程度上不会影响葡萄糖的摄取,而CBF和CTH的变化会在不同程度上影响葡萄糖和氧气的摄取。因此,功能性充血比葡萄糖的摄取更促进葡萄糖的摄取,在能量需求增加期间有利于有氧糖酵解。将我们的模型应用于葡萄糖类似物,我们观察到LC取决于生理状态,并且有可能高估功能激活过程中CMRglc的相对增加多达50%的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号