...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes
【24h】

Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes

机译:NOX3和NOX5衍生的活性氧驱动人类少突胶质细胞的分化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1–4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation.
机译:活性氧(ROS)是信号分子,介导应激反应,细胞凋亡,DNA损伤,基因表达和分化。我们在这里报告说,少突胶质细胞(OLs),中枢神经系统中的髓鞘形成细胞的分化是由ROS驱动的。为了剖析OL分化途径,我们使用了细胞系MO3-13,该细胞系显示OL前体的分子和细胞特征。这些细胞在低水平的H2O2或蛋白激酶C(PKC)激活剂phorbol-12-肉豆蔻酸酯-13-乙酸酯(PMA)中暴露1-4天可增加特定OL分化标志物的表达:特定的核因子Olig- 2和髓磷脂碱性蛋白(MBP),该蛋白经过处理并选择性地积聚在膜中。分化基因的诱导与ERK1-2的激活和核cAMP反应元件结合蛋白1(CREB)的磷酸化有关。 PKC介导ROS诱导的分化,因为PKC耗尽或PKC抑制剂双吲哚基-马来酰亚胺(BIM)逆转了H2O2对分化标志物的诱导。 H2O2和PMA增加了膜结合NADPH氧化酶,NOX3和NOX5的表达。这些蛋白质的选择性消耗抑制了PMA诱导的分化。此外,NOX5沉默降低了NOX3 mRNA的水平,这表明NOX5产生的ROS上调了NOX3的表达。这些数据揭示了由PKC激活的,复杂的ROS生成酶网络(NOX5至NOX3),并且是OL分化所必需的。此外,作为OL分化诱导剂的NOX3和NOX5代表了与OL分化障碍相关的脱髓鞘疾病(包括多发性硬化症)治疗的新靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号