首页> 外文期刊>Frontiers in Chemistry >Exploring the Kinetic and Thermodynamic Relationship of Charge Transfer Reactions used in Localized Electrodeposition and Patterning in a Scanning Bipolar Cell
【24h】

Exploring the Kinetic and Thermodynamic Relationship of Charge Transfer Reactions used in Localized Electrodeposition and Patterning in a Scanning Bipolar Cell

机译:探索用于扫描双极电池中的局部电沉积和图案化的电荷转移反应的动力学和热力学关系

获取原文
           

摘要

Bipolar electrochemistry involves spatial separation and localization of charge balanced reduction and oxidation reactions on an electrically floating electrode, a result of intricate coupling of the work piece with the ohmic drop in the electrochemical cell and to the thermodynamics and kinetics of the respective bipolar reactions. When paired with a rastering microjet electrode, in a scanning bipolar cell (SBC), local electrodeposition and patterning of metals beneath the microjet can be realized without direct electrical connections to the workpiece. Here, we expand on prior research detailing electrolyte design guidelines for electrodeposition and patterning with the SBC, focusing on the relationship between kinetics and thermodynamics of the respective bipolar reactions. The kinetic reversibility or irreversibility of the desired deposition reaction influences the range of possible effective bipolar counter reactions. For kinetically irreversible deposition systems (i.e. nickel), a wider thermodynamic window is available for selection of the counter reaction. For kinetically reversible systems (i.e. copper or silver) that can be easily etched, tight thermodynamic windows with a small downhill driving force for spontaneous reduction are required to prevent metal patterns from electrochemical dissolution. Furthermore, additives used for the bipolar counter reaction can influence not only the kinetics of deposition, but also the morphology and microstructure of the deposit. Cyclic voltammetry measurements help elucidate secondary parasitic reduction reactions occurring during bipolar nickel deposition and describe the thermodynamic relationship of both irreversible and reversible bipolar couples. Finally, finite element method simulations explore the influence of bipolar electrode area on current efficiency and connect experimental observations of pattern etching to thermodynamic and kinetic relationships.
机译:双极电化学涉及在电浮动电极上的电荷平衡还原和氧化反应的空间分离和局部化,这是工件与电化学电池中欧姆滴的复杂耦合以及相应双极反应的热力学和动力学的结果。当与光栅微喷电极配对时,在扫描双极单元(SBC)中,无需直接电连接至工件即可实现微喷头下方金属的局部电沉积和图案化。在这里,我们扩展了先前的研究,详细介绍了使用SBC进行电沉积和图案化的电解质设计指南,重点研究了各个双极性反应的动力学和热力学之间的关系。所需沉积反应的动力学可逆性或不可逆性影响可能的有效双极反反应的范围。对于动力学不可逆的沉积系统(即镍),可以使用更宽的热力学窗口来选择反反应。对于易于蚀刻的动力学可逆系统(即铜或银),需要具有小的下坡驱动力以自发还原的紧密热力学窗口,以防止金属图案电化学溶解。此外,用于双极反作用的添加剂不仅会影响沉积动力学,还会影响沉积物的形态和微观结构。循环伏安法测量有助于阐明在双极镍沉积过程中发生的次级寄生还原反应,并描述了不可逆和可逆双极对的热力学关系。最后,有限元方法模拟探索了双极电极面积对电流效率的影响,并将图案蚀刻的实验观察结果与热力学和动力学关系联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号