...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Response: Commentary: “ Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity”
【24h】

Response: Commentary: “ Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity”

机译:回应:评论:“ Prdm13 调节视网膜无长蛋白中间神经元的亚型规格并调节视觉敏感性”

获取原文
   

获取外文期刊封面封底 >>

       

摘要

First, on behalf of all of the authors of our paper, we thank Drs. Bowrey and James for their interest in our paper and for giving us their comments on the OKRs (Optokinetic Responses) of Prdm13 -deficient ( Prdm13 ~(?∕?)) mice (Watanabe et al., 2015 ). Drs. Bowrey and James hypothesized that Prdm13 ~(?∕?)mice showed enhanced sensitivities to moving visual stimuli through “aliasing” caused by the decreased sampling function of the reduced numbers of amacrine cells in the retina (Bowrey and James, 2015 ). Aliasing is a phenomenon in which the presentation of continuously moving visual stimulus of high spatial frequency causes reduced neural sampling function, leading to misrecognition of a high frequency stimulus as a low frequency pattern (Gotz, 1964 ; Anderson and Hess, 1990 ; Coletta et al., 1990 ; Artal et al., 1995 ). According to the previous studies on mouse visual function analysis, the optimal spatial frequency range, that which elicits smooth eye movement, is 0.01–0.5 cycle/degree, and the maximum spatial frequency for maintaining smooth eye movement without causing aliasing is 1.0 cycle/degree (Prusky et al., 2000 ; Geng et al., 2011 ). However, in fact, many experiments set the highest spatial frequencies lower than 1.0 cycle/degree (Prusky and Douglas, 2004 ; Prusky et al., 2004 ; van Alphen et al., 2010 ; Busse et al., 2011 ; Histed et al., 2012 ). In our study, we set the highest spatial frequency at 0.5 cycle/degree, at which aliasing is very unlikely to occur. Even if we suppose that aliasing can occur at 0.5 cycle/degree, the OKRs of Prdm13 ~(?∕?)mice at 0.5 cycle/degree were unchanged in both initial and late phases compared with those in WT mice. This strongly suggests that an aliasing effect, which shows stronger responses at higher frequencies, was not observed at 0.5 cycle/degree. Visual responses in classical OKR were measured basically by whether or not the mouse head or eye moves. On the other hand, the visual responses used in our OKR system are based on the speed of the smooth eye movements elicited by moving visual stimuli. In other words, the classical OKR digitally detected the existence of responses to visual stimuli, whereas our OKR continuously measured the extent of moving stimuli speeds. Hence, if aliasing occurred in our OKR system, eye movement speed would become slower, and reduced OKRs would be observed. Most studies of retinal sampling function have focused on photoreceptors and ganglion cells (Missotten, 1974 ; Thibos et al., 1987 ; Dacey, 1993 ). The relationship between amacrine cell subtypes and retinal sampling function has barely been explored. On the other hand, it has been reported that direction-selective ganglion cells (DSGCs) in the retina provide direct inputs to the brainstem structures involved in OKRs (Oyster et al., 1980 ; Yonehara et al., 2009 ; Kim et al., 2010 ; Kay et al., 2011 ). DSGC spike responses were elicited by moving grating stimuli at spatial frequencies of 0.025–0.2 cycles/degree and temporal frequencies of 0.25–5.33 cycles/s in the preferred direction (Hoggarth et al., 2015 ). These spatiotemporal tuning properties of DSGCs are similar to those of mouse OKRs (Tabata et al., 2010 ). In our study, Prdm13 ~(?∕?)mice showed OKRs at spatial frequencies of 0.03–0.25 cycles/degree and temporal frequencies of 0.375–12 cycles/s (Watanabe et al., 2015 ), which are consistent with the spatiotemporal frequency ranges of DSGCs. This suggests that DSGCs modulate the OKRs of Prdm13 ~(?∕?)mice, as we mentioned in the Discussion of our paper. Furthermore, Hoggarth suggested that the GABAergic wide-field amacrine cells modulate the spatiotemporal tuning properties of DSGCs (Hoggarth et al., 2015 ). Since a significant number of Prdm13-positive amacrine cells are GABAergic, GABAergic wide-field amacrine cells might be affected in Prdm13 ~(?∕?)mice. Hence, modulation of DSGCs may be the more probable mechanism affecting the OKRs of Prdm13 ~(?∕?)mice than aliasing. However, further elucidation of the functional mechanisms of Prdm13-positive amacrine cells in the retinal circuit is needed. Taking the above considerations together, we conclude that OKR enhancement in Prdm13 ~(?∕?)mice is not due to aliasing. However, we do not deny the possibility that Prdm13-positive amacrine cells are involved in aliasing when it occurs. Further detailed analysis of Prdm13 ~(?∕?)mouse visual function will advance our understanding of information processing in the intricate retinal circuit. Author contributions YS, SW, and TF wrote the response commentary. Funding This work was supported by the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Hyogo Science and Techonology Association, The Osaka Community Foundation, and a Grant-in-Aid for Scientific Research (#15H04669). Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that cou
机译:首先,我们代表论文的所有作者,感谢Drs。鲍里(Bowrey)和詹姆斯(James)对论文的兴趣以及对Prdm13缺陷(Prdm13〜(?Opt?))小鼠的OKRs(光动力学反应)的评论给我们(Watanabe et al。,2015)。博士Bowrey和James假设Prdm13〜(?∕?)小鼠表现出通过“混淆”增强了对运动视觉刺激的敏感性,这是由于视网膜中无长分泌细胞数量减少的采样功能降低所致(Bowrey和James,2015年)。混叠是一种现象,在这种现象中,持续出现的高空间频率视觉刺激会导致神经采样功能降低,从而导致高频刺激被误认为低频模式(Gotz,1964; Anderson和Hess,1990; Coletta等,1990; Artal等,1995)。根据先前有关鼠标视觉功能分析的研究,引起眼睛平滑运动的最佳空间频率范围为0.01-0.5个周期/度,而在不引起混叠的情况下保持眼睛平滑运动的最大空间频率为1.0个周期/度。 (Prusky等,2000; Geng等,2011)。但是,实际上,许多实验将最高空间频率设置为低于1.0个循环/度(Prusky和Douglas,2004; Prusky等人,2004; van Alphen等人,2010; Busse等人,2011; Histed等人,2010)。 。,2012)。在我们的研究中,我们将最高空间频率设置为0.5个周期/度,在该频率下极不可能发生混叠。即使我们假设混叠可以在0.5个周期/度下发生,但与野生型小鼠相比,Prdm13〜(Δβ)小鼠在0.5个周期/度下的OKR在初始和晚期均没有变化。这有力地表明,在0.5个周期/度下未观察到混叠效应,该混叠效应在较高频率下显示出较强的响应。基本上,经典OKR的视觉反应是通过鼠标头或眼睛是否移动来衡量的。另一方面,我们的OKR系统中使用的视觉响应是基于运动的视觉刺激引起的平滑眼球运动的速度。换句话说,经典的OKR以数字方式检测到对视觉刺激的反应,而我们的OKR则连续测量运动刺激速度的程度。因此,如果在我们的OKR系统中发生混叠,则眼睛的运动速度将变慢,并且可以观察到OKR减少。视网膜取样功能的大多数研究都集中在感光细胞和神经节细胞上(Missotten,1974; Thibos等,1987; Dacey,1993)。羊脂蛋白细胞亚型与视网膜采样功能之间的关系几乎没有被探索。另一方面,据报道视网膜中的方向选择神经节细胞(DSGC)为参与OKR的脑干结构提供直接输入(Oyster等,1980; Yonehara等,2009; Kim等。 ,2010; Kay等,2011)。通过在优选方向上以0.025-0.2个周期/度的空间频率和0.25-5.33个周期/ s的时间频率移动光栅刺激来激发DSGC尖峰响应(Hoggarth等,2015)。 DSGC的这些时空调节特性与小鼠OKR相似(Tabata等,2010)。在我们的研究中,Prdm13〜(?∕?)小鼠在空间频率为0.03–0.25个循环/度和时间频率为0.375–12个循环/秒时显示OKRs(Watanabe等,2015),与时空频率一致DSGC的范围。正如我们在本文的“讨论”中提到的,这表明DSGC可以调节Prdm13〜(?∕?)小鼠的OKR。此外,Hoggarth认为,GABA能性广视野无长突细胞可调节DSGC的时空调谐特性(Hoggarth等,2015)。由于大量Prdm13阳性无长突细胞是GABA能的,因此Prdm13〜(?∕?)小鼠可能会​​影响GABA能的广视野无长突细胞。因此,与混叠相比,DSGC的调制可能是更可能影响Prdm13〜(Δω)小鼠OKR的机制。但是,需要进一步阐明视网膜回路中Prdm13阳性无长突细胞的功能机制。综合考虑以上因素,我们得出的结论是Prdm13〜(?∕?)小鼠的OKR增强不是由于混叠。但是,我们不否认Prdm13阳性无长突细胞在发生混叠时会参与混叠的可能性。对Prdm13〜(?∕?)小鼠视觉功能的进一步详细分析将增进我们对复杂视网膜回路中信息处理的理解。作者的贡献YS,SW和TF撰写了评论。资金支持这项工作得到了日本科学技术署(JST),进化科学与技术核心研究(CREST),兵库科学技术协会,大阪社区基金会以及科学研究资助的支持(# 15H04669)。利益冲突声明作者宣称,这项研究是在没有任何商业或金融关系的情况下进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号