...
首页> 外文期刊>Energies >Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2
【24h】

Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

机译:通过注入超临界二氧化碳从天然气水合物沉积物中生产甲烷

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir conditions of pressure and temperature are constrained. Experiments were conducted in a high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10?°C) and hydrostatic pressures (8 MPa, 13 MPa). The efficiency of both, CH4 production and CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed hydrates can form. At 2 °C, the production process was less effective due to congestion of transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at 10 °C CH4 production suffered from local increases in permeability and fast breakthrough of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream identified gas mobilization as equally important process parameter in addition to the rates of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat supply and CO2 injection in one supercritical phase helps to overcome the mass transfer limitations usually observed in experiments with cold liquid or gaseous CO2.
机译:通过注入CO 2 从海底和多年冻土环境中的CH 4 水合物矿床中回收天然气被认为是实现排放中性能源生产的合适策略。这项研究表明,注入热超临界CO 2 特别有希望。热量的添加触发了CH 4 -水合物的分解,而CO 2 一旦热平衡,便与孔隙水发生反应,并由于CO < sub> 2 -水合物。此外,限制了压力和温度的最佳储层条件。实验是在高压流通式反应器中在不同的沉积物温度(2°C,8°C,10?C)和静水压力(8 MPa,13 MPa)下进行的。 CH 4 的生产和CO 2 的保留效率均在8°C,13 MPa时最佳。在这里,CO 2 -和CH 4 -水合物以及混合水合物均可形成。在2°C时,由于通过快速形成CO 2 -水合物的途径通过沉积物的运输路径的堵塞,生产过程的效率降低。相反,在10°C时,CH 4 的生产受到渗透率的局部增加和注入流体快速突破的影响,从而将CH 4 库的可访问性限制为仅最突出的流体通道。收集到的气体和流体流的质量和体积平衡将气体迁移与甲烷水合物分解和水合物转化的速率确定为同等重要的工艺参数。因此,在一个超临界相中结合供热和注入CO 2 有助于克服通常在液态或气态CO 2 实验中观察到的传质限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号