首页> 外文期刊>Energies >DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends
【24h】

DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends

机译:电动汽车,插电式混合动力汽车和快速充电站的DC-DC转换器拓扑:最新技术和未来趋势

获取原文
           

摘要

This article reviews the design and evaluation of different DC-DC converter topologies for Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs). The design and evaluation of these converter topologies are presented, analyzed and compared in terms of output power, component count, switching frequency, electromagnetic interference (EMI), losses, effectiveness, reliability and cost. This paper also evaluates the architecture, merits and demerits of converter topologies (AC-DC and DC-DC) for Fast Charging Stations (FCHARs). On the basis of this analysis, it has found that the Multidevice Interleaved DC-DC Bidirectional Converter (MDIBC) is the most suitable topology for high-power BEVs and PHEVs ( 10kW), thanks to its low input current ripples, low output voltage ripples, low electromagnetic interference, bidirectionality, high efficiency and high reliability. In contrast, for low-power electric vehicles (10 kW), it is tough to recommend a single candidate that is the best in all possible aspects. However, the Sinusoidal Amplitude Converter, the Z-Source DC-DC converter and the boost DC-DC converter with resonant circuit are more suitable for low-power BEVs and PHEVs because of their soft switching, noise-free operation, low switching loss and high efficiency. Finally, this paper explores the opportunity of using wide band gap semiconductors (WBGSs) in DC-DC converters for BEVs, PHEVs and converters for FCHARs. Specifically, the future roadmap of research for WBGSs, modeling of emerging topologies and design techniques of the control system for BEV and PHEV powertrains are also presented in detail, which will certainly help researchers and solution engineers of automotive industries to select the suitable converter topology to achieve the growth of projected power density.
机译:本文回顾了针对电池电动车(BEV)和插电式混合动力车(PHEV)的不同DC-DC转换器拓扑的设计和评估。提出,分析和比较了这些转换器拓扑的设计和评估,包括输出功率,组件数量,开关频率,电磁干扰(EMI),损耗,有效性,可靠性和成本。本文还评估了快速充电站(FCHAR)的转换器拓扑(AC-DC和DC-DC)的体系结构,优缺点。根据此分析,发现多设备交错式DC-DC双向转换器(MDIBC)由于其低输入电流纹波,低输出电压而成为最适合大功率BEV和PHEV(> 10kW)的拓扑波纹,低电磁干扰,双向性,高效率和高可靠性。相比之下,对于低功率电动汽车(<10 kW),很难推荐一个在所有可能的方面都最好的候选人。然而,正弦波幅度转换器,Z源DC-DC转换器和带谐振电路的升压DC-DC转换器由于其软开关,无噪声运行,低开关损耗和低功耗特性而更适合于低功率BEV和PHEV。高效率。最后,本文探讨了在BEV,PHEV和FCHAR转换器的DC-DC转换器中使用宽带隙半导体(WBGS)的机会。具体来说,还将详细介绍WBGS的未来研究路线图,新兴拓扑的建模以及BEV和PHEV动力总成控制系统的设计技术,这些无疑将帮助汽车行业的研究人员和解决方案工程师选择合适的转换器拓扑结构,从而实现预计功率密度的增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号