...
首页> 外文期刊>Fluids and Barriers of the CNS >Enhanced in vitro model of the CSF dynamics
【24h】

Enhanced in vitro model of the CSF dynamics

机译:脑脊液动力学的增强体外模型

获取原文
           

摘要

Fluid dynamics of the craniospinal system are complex and still not completely understood. In vivo flow and pressure measurements of the cerebrospinal fluid (CSF) are limited. Whereas in silico modeling can be an adequate pathway for parameter studies, in vitro modeling of the craniospinal system is essential for testing and evaluation of therapeutic measures associated with innovative implants relating to, for example, normal pressure hydrocephalus and other fluid disorders. Previously-reported in vitro models focused on the investigation of only one hypothesis of the fluid dynamics rather than developing a modular set-up to allow changes in focus of the investigation. The aim of this study is to present an enhanced and validated in vitro model of the CSF system which enables the future embedding of implants, the validation of in silico models or phase-contrast magnetic resonance imaging (PC-MRI) measurements and a variety of sensitivity analyses regarding pathological behavior, such as reduced CSF compliances, higher resistances or altered blood dynamics. The in vitro model consists of a ventricular system which is connected via the aqueduct to the cranial and spinal subarachnoid spaces. Two compliance chambers are integrated to cushion the arteriovenous blood flow generated by a cam plate unit enabling the modeling of patient specific flow dynamics. The CSF dynamics are monitored using three cranial pressure sensors and a spinal ultrasound flow meter. Measurements of the in vitro spinal flow were compared to cervical flow data recorded with PC-MRI from nine healthy young volunteers, and pressure measurements were compared to the literature values reported for intracranial pressure (ICP) to validate the newly developed in vitro model. The maximum spinal CSF flow recorded in the in vitro simulation was 133.60?ml/min in the caudal direction and 68.01?ml/min in the cranial direction, whereas the PC-MRI flow data of the subjects showed 122.82?ml/min in the caudal and 77.86?ml/min in the cranial direction. In addition, the mean ICP (in vitro) was 12.68 mmHg and the pressure wave amplitude, 4.86?mmHg, which is in the physiological range. The in vitro pressure values were in the physiological range. The amplitudes of the flow results were in good agreement with PC-MRI data of young and healthy volunteers. However, the maximum cranial flow in the in vitro model occurred earlier than in the PC-MRI data, which might be due to a lack of an in vitro dynamic compliance. Implementing dynamic compliances and related sensitivity analyses are major aspects of our ongoing research.
机译:颅脊髓系统的流体动力学是复杂的,但仍不完全清楚。脑脊液(CSF)的体内流量和压力测量受到限制。计算机模拟可以成为进行参数研究的适当途径,而颅骨椎系统的体外模拟对于测试和评估与创新性植入物相关的治疗措施至关重要,例如与正常压力脑积水和其他体液异常有关。先前报道的体外模型仅研究流体动力学的一种假设,而不是开发模块化设置以允许改变研究重点。这项研究的目的是介绍一种经过增强和验证的CSF系统体外模型,该模型可以实现将来植入物的嵌入,计算机模型的验证或相衬磁共振成像(PC-MRI)测量以及各种关于病理行为的敏感性分析,例如降低的CSF依从性,更高的耐药性或改变的血液动力学。体外模型由一个心室系统组成,该心室系统通过导水管连接到颅和脊髓蛛网膜下腔。集成了两个顺应性腔室,以缓冲由凸轮板单元生成的动静脉血流,从而可以对患者特定的血流动力学进行建模。使用三个颅骨压力传感器和脊柱超声流量计监测脑脊液动力学。将体外脊髓血流的测量值与PC-MRI记录的来自9位健康年轻志愿者的宫颈血流数据进行比较,并将压力测量值与报道的颅内压(ICP)文献值进行比较,以验证新开发的体外模型。体外模拟中记录的最大脊柱CSF流量在尾端方向为133.60?ml / min,在颅骨方向为68.01?ml / min,而受试者的PC-MRI流量数据显示,在脑脊液中为122.82?ml / min。尾部,在颅骨方向为77.86?ml / min。另外,平均ICP(体外)为12.68 mmHg,压力波幅度为4.86?mmHg,处于生理范围内。体外压力值在生理范围内。血流结果的幅度与年轻和健康志愿者的PC-MRI数据高度吻合。但是,体外模型中的最大颅流发生时间早于PC-MRI数据,这可能是由于缺乏体外动态依从性造成的。实施动态合规性和相关的敏感性分析是我们正在进行的研究的主要方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号