首页> 外文期刊>Fluids and Barriers of the CNS >Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D
【24h】

Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D

机译:iPSC衍生的周细胞在2D和3D中对iPSC衍生的脑微血管内皮细胞屏障功能的作用

获取原文
           

摘要

Pericytes of the blood–brain barrier (BBB) are embedded within basement membrane between brain?microvascular endothelial cells (BMECs) and astrocyte end-feet. Despite the direct cell–cell contact observed in vivo, most in vitro BBB models introduce an artificial membrane that separates pericytes from BMECs. In this study, we investigated the effects of pericytes on BMEC barrier function across a range of in vitro platforms with varied spatial orientations and levels of cell–cell contact. We differentiated RFP-pericytes and GFP-BMECs from hiPSCs and monitored transendothelial electrical resistance (TEER) across BMECs on transwell inserts while pericytes were either directly co-cultured on the membrane, indirectly co-cultured in the basolateral chamber, or embedded in a collagen I gel formed on the transwell membrane. We then incorporated pericytes into a tissue-engineered microvessel model of the BBB and measured pericyte motility and microvessel permeability. We found that BMEC monolayers did not require co-culture with pericytes to achieve physiological TEER values (?1500?Ω?cm2). However, under stressed conditions where TEER values for BMEC monolayers were reduced, indirectly co-cultured hiPSC-derived pericytes restored optimal TEER. Conversely, directly co-cultured pericytes resulted in a decrease in TEER by interfering with BMEC monolayer continuity. In the microvessel model, we observed direct pericyte-BMEC contact, abluminal pericyte localization, and physiologically-low Lucifer yellow permeability comparable to that of BMEC microvessels. In addition, pericyte motility decreased during the first 48?h of co-culture, suggesting progression towards pericyte stabilization. We demonstrated that monocultured BMECs do not require co-culture to achieve physiological TEER, but that suboptimal TEER in stressed monolayers can be increased through co-culture with hiPSC-derived pericytes or conditioned media. We also developed the first BBB microvessel model using exclusively hiPSC-derived BMECs and pericytes, which could be used to examine vascular dysfunction in the human CNS.
机译:血脑屏障(BBB)的周细胞嵌入在脑微血管内皮细胞(BMEC)和星形胶质细胞终末脚之间的基底膜内。尽管在体内观察到直接的细胞间接触,但大多数体外BBB模型还是采用了一种将周细胞与BMEC分离的人工膜。在这项研究中,我们研究了周细胞对一系列具有不同空间方向和细胞间接触水平的体外平台对BMEC屏障功能的影响。我们将RFP-周细胞和GFP-BMEC与hiPSCs进行了区分,并监测跨孔插入物上跨BMEC的跨内皮电阻(TEER),而周细胞则直接在膜上共培养,在基底外侧腔中间接共培养或包埋在胶原蛋白中我在transwell膜上形成凝胶。然后,我们将周细胞并入BBB的组织工程微血管模型中,并测量周细胞运动性和微血管通透性。我们发现,BMEC单层不需要与周细胞共培养即可达到生理TEER值(>?1500?Ω?cm2)。但是,在降低BMEC单层TEER值的压力条件下,间接共培养hiPSC衍生的周细胞可恢复最佳TEER。相反,直接共培养的周细胞会通过干扰BMEC单层连续性而导致TEER降低。在微血管模型中,我们观察到了与BMEC微血管相当的直接周细胞与BMEC接触,无囊周细胞定位以及生理学上较低的路西法黄渗透性。此外,在共培养的最初48小时内,周细胞运动性降低,表明向周细胞稳定发展。我们证明,单培养的BMEC不需要共培养即可获得生理性TEER,但是通过与hiPSC衍生的周细胞或条件培养基共培养,可以提高应激单层的次优TEER。我们还开发了第一个仅使用hiPSC衍生的BMEC和周细胞的BBB微血管模型,该模型可用于检查人CNS中的血管功能障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号