...
首页> 外文期刊>Geoscientific Instrumentation, Methods and Data Systems >Aalto-1 nanosatellite – technical description and mission objectives
【24h】

Aalto-1 nanosatellite – technical description and mission objectives

机译:Aalto-1纳米卫星–技术说明和任务目标

获取原文
   

获取外文期刊封面封底 >>

       

摘要

This work presents the outline and so far completed design of the Aalto-1science mission. Aalto-1 is a multi-payload remote-sensingnanosatellite, built almost entirely by students. The satellite aims for a500–900 km sun-synchronous orbit and includes an accurate attitudedynamics and control unit, a UHF/VHF housekeeping and S-band data links,and a GPS unit for positioning (radio positioning and NORAD TLE's areplanned to be used as backup). It has three specific payloads: a spectralimager based on piezo-actuated Fabry–Perot interferometry, designedand built by The Technical Research Centre of Finland (VTT); a miniaturisedradiation monitor (RADMON) jointly designed and built by Universities ofHelsinki and Turku; and an electrostatic plasma brake designed and built bythe Finnish Meteorological Institute (FMI), derived from the concept of thee-sail, also originating from FMI. Two phases are important for thepayloads, the technology demonstration and the science phase. The emphasis isplaced on technological demonstration of the spectral imager and RADMON, andsuitable targets have already been chosen to be completed during that phase,while the plasma brake will start operation in the latter part of thescience phase. The technology demonstration will be over in a relatively shorttime, while the science phase is planned to last two years. The sciencephase is divided into two smaller phases: the science observations phase,during which only the spectral imager and RADMON will be operated for6–12 months and the plasma brake demonstration phase, which is dedicated tothe plasma brake experiment for at least a year. These smaller phases arenecessary due to the drastically different power, communication and attituderequirements of the payloads. The spectral imager will be by far the mostdemanding instrument on board, as it requires most of the downlinkbandwidth, has a high peak power and attitude performance. It will acquireimages in a series up to at least 20 spectral bands within the 500–900 nmspectral range, forming the desired spectral data cube product. Shortlybefore an image is acquired, the parallel visual spectrum camera will take abroader picture for comparison. Also stereoscopic imaging is planned. Theamount of data collected by the spectral imager is adjustable, and rangesanywhere from 10 to 500 MB. The RADMON will be on 80% of an orbitperiod on average and together with housekeeping data will gather around2 MB of data in 24 h. An operational limitation is formed due to theS-band downlink capability of 29–49 MB per 24 h for a 500 900 kmorbit altitude, as only one ground station is planned to be available for thesatellite. This will limit both type and quantity of spectral imager imagestaken during the science phase. The plasma brake will in turn be withinan angle of 20° over the poles for efficient use of the Earth'smagnetic field and ionosphere during its spin-up and operation.
机译:这项工作提出了Aalto-1science任务的大纲和到目前为止完成的设计。 Aalto-1是一种多载荷遥感卫星,几乎完全由学生建造。该卫星瞄准500-900公里的太阳同步轨道,并包括一个精确的姿态动力学和控制单元,一个UHF / VHF内务管理和S波段数据链路,以及一个用于定位的GPS单元(计划将其用于无线电定位和NORAD TLE备用)。它具有三种特定的有效载荷:一种由压电技术法布里-珀罗干涉测量法制成的光谱成像仪,由芬兰技术研究中心(VTT)设计和建造;由赫尔辛基大学和图尔库大学共同设计和建造的微型辐射监测器(RADMON);以及由芬兰气象研究所(FMI)设计和制造的静电等离子制动器,其源于thee-sail的概念,也源自FMI。对于有效负载而言,两个阶段很重要,即技术演示和科学阶段。重点放在光谱成像仪和RADMON的技术演示上,并且已经选择了在该阶段完成的合适目标,而等离子制动器将在科学阶段的后期开始运行。技术演示将在相对较短的时间内结束,而科学阶段计划持续两年。科学阶段分为两个较小的阶段:科学观察阶段,在此阶段仅光谱成像仪和RADMON将运行6至12个月,而等离子制动器演示阶段则专用于至少一年的等离子制动实验。由于有效载荷的功率,通信和姿态要求截然不同,因此需要这些较小的阶段。光谱成像仪将是船上最需要的仪器,因为它需要大部分下行链路带宽,并具有很高的峰值功率和姿态性能。它会在500–900 nm光谱范围内获取一系列至少20个光谱带中的图像,从而形成所需的光谱数据立方乘积。在获取图像之前不久,平行光谱摄像机将拍摄国外的图片进行比较。还计划立体成像。光谱成像仪收集的数据量是可调的,范围从10到500 MB。 RADMON平均将在轨道周期的80%上,并与内务处理数据一起在24小时内收集大约2 MB的数据。由于计划在500 900 km的轨道高度上每24 h的S波段下行链路容量为29-49 MB,从而形成了操作限制,因为计划仅为卫星提供一个地面站。这将限制科学阶段期间拍摄的光谱成像器图像的类型和数量。反过来,等离子制动器将在两极之间成20°的角度以内,以便在加速和运行过程中有效利用地球的磁场和电离层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号