...
首页> 外文期刊>Geoscientific Model Development >Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches
【24h】

Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches

机译:评估高能大气物理学的蒙特卡洛工具II:相对论失控的电子雪崩

获取原文
           

摘要

The emerging field of high-energy atmospheric physics studies how high-energy particles are produced in thunderstorms, in the form of terrestrial γ -ray flashes and γ -ray glows (also referred to as thunderstorm ground enhancements). Understanding these phenomena requires appropriate models of the interaction of electrons, positrons and photons with air molecules and electric fields. We investigated the results of three codes used in the community – Geant4, GRanada Relativistic Runaway simulator (GRRR) and Runaway Electron Avalanche Model (REAM) – to simulate relativistic runaway electron avalanches (RREAs). This work continues the study of Rutjes et?al. ( 2016 ) , now also including the effects of uniform electric fields, up to the classical breakdown field, which is about 3.0?MV?m sup?1/sup at standard temperature and pressure. We first present our theoretical description of the RREA process, which is based on and incremented over previous published works. This analysis confirmed that the avalanche is mainly driven by electric fields and the ionisation and scattering processes determining the minimum energy of electrons that can run away, which was found to be above ≈10 keV for any fields up to the classical breakdown field. To investigate this point further, we then evaluated the probability to produce a RREA as a function of the initial electron energy and of the magnitude of the electric field. We found that the stepping methodology in the particle simulation has to be set up very carefully in Geant4. For example, a too-large step size can lead to an avalanche probability reduced by a factor of 10 or to a 40?% overestimation of the average electron energy. When properly set up, both Geant4 models show an overall good agreement (within ≈10 %) with REAM and GRRR. Furthermore, the probability that particles below 10?keV accelerate and participate in the high-energy radiation is found to be negligible for electric fields below the classical breakdown value. The added value of accurately tracking low-energy particles ( ?1/sup . In a second simulation set-up, we compared the physical characteristics of the avalanches produced by the four models: avalanche (time and length) scales, convergence time to a self-similar state and energy spectra of photons and electrons. The two Geant4 models and REAM showed good agreement on all parameters we tested. GRRR was also found to be consistent with the other codes, except for the electron energy spectra. That is probably because GRRR does not include straggling for the radiative and ionisation energy losses; hence, implementing these two processes is of primary importance to produce accurate RREA spectra. Including precise modelling of the interactions of particles below 10?keV (e.g. by taking into account molecular binding energy of secondary electrons for impact ionisation) also produced only small differences in the recorded spectra.
机译:高能大气物理学的新兴领域研究了雷暴如何以地面γ射线闪光和γ射线辉光(也称为雷暴地面增强)形式产生高能粒子。了解这些现象需要适当的电子,正电子和光子与空气分子和电场相互作用的模型。我们调查了社区中使用的三个代码的结果– Geant4,格拉纳达相对论失控模拟器(GRRR)和逃逸电子雪崩模型(REAM)–以模拟相对论失控电子雪崩(RREA)。这项工作继续了Rutjes等人的研究。 (2016),现在还包括均匀电场的影响,直到经典击穿场,在标准温度和压力下约为3.0?MV?m ?1 。我们首先介绍我们对RREA过程的理论描述,该过程是基于先前已发表的作品并在此基础上进行了补充。该分析证实,雪崩主要是由电场驱动的,电离和散射过程决定了可以逃逸的电子的最小能量,发现对于经典击穿电场之前的任何电场,雪崩能量均高于≈10 keV。为了进一步研究这一点,我们然后评估了产生RREA的概率与初始电子能量和电场强度的关系。我们发现必须在Geant4中非常仔细地设置粒子模拟中的步进方法。例如,太大的步长会导致雪崩概率降低10倍,或者导致平均电子能量高估40%。正确设置后,两个Geant4模型都显示出与REAM和GRRR的总体良好协议(在≈10%之内)。此外,对于低于经典击穿值的电场,发现低于10?keV的粒子加速并参与高能辐射的概率可忽略不计。精确跟踪低能粒子(?1 的附加值。在第二个模拟设置中,我们比较了四种模型产生的雪崩的物理特征:雪崩(时间和长度)尺度,收敛时间到两个相似的Geant4模型和REAM在我们测试的所有参数上都表现出良好的一致性,除了电子能谱外,GRRR也与其他代码一致。可能是因为GRRR不包括辐射和电离能损失;因此,实施这两个过程对于产生准确的RREA光谱至关重要,包括对10?keV以下的粒子相互作用进行精确建模(例如,考虑分子碰撞电离的二次电子结合能)在记录的光谱中也仅产生很小的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号