首页> 外文期刊>Environmental Systems Research >Microbial evolution in extreme environments: microbial migration, genomic highways, and geochemical barriers in hydrothermal ecosystems
【24h】

Microbial evolution in extreme environments: microbial migration, genomic highways, and geochemical barriers in hydrothermal ecosystems

机译:极端环境中的微生物进化:热液生态系统中的微生物迁移,基因组高速公路和地球化学障碍

获取原文
           

摘要

Background Recent advances in microbial ecology are providing unprecedented opportunities to test Baas Becking’s oft-cited “everything is everywhere, environment selects” axiom. A number of recent studies have brought together genomic, ecological, and physico-chemical approaches that are, for the first time, beginning to test and quantify this axiom, providing fundamental shifts in our understanding of microbial ecology. Here we integrate environmental sequencing with biogeochemistry to interrogate patterns in abundance and community composition—as well as dispersal mechanisms and timing—that underlie microbial migration in natural ecosystems. Our analysis focuses on the presence of and similarities across high identity genomic DNA scaffolds and fragments, thousands of which are distributed across over two dozen communities sampled from hydrothermal ecosystems from Yellowstone National Park, Wyoming and Great Boiling Springs, Nevada. Results Despite their geographical isolation from one another and physico-chemical isolation from surrounding mesophilic environments, a large number (&43,000) of long, high identity DNA scaffolds were conserved across two or more hot springs communities. This widespread distribution of nearly identical DNA fragments suggests active mechanisms driving microbial migration and genomic information sharing. Genes encoded on these scaffolds encompass a broad spectrum of metabolic capabilities from diverse thermophilic taxa, but include revealing biases in the functions and taxonomic distribution of shared genes. Evolutionary rate analysis suggests that genomic migration and sharing is not only recent and ongoing, but that very different mechanisms are driving chemotrophic versus phototrophic community information exchange—mechanisms that include both biological and abiotic vectors and catastrophic events that have acted as evolutionary bottlenecks in particular on sunlight-driven photosynthetic communities. Conclusions The intersection of biology and environment is privy to an unprecedented level of interrogation as a result of advances in ecosystems biology, in particular through the integration of data from analysis across multiple scales and disciplines. Both the methodologies developed herein, and the findings our results support, help advance our understanding of microbial ecology and dispersal mechanisms in natural environments.
机译:背景技术微生物生态学的最新进展为测试Baas Becking经常引用的“一切无处不在,环境选择”公理提供了前所未有的机会。最近的许多研究将基因组学,生态学和物理化学方法结合在一起,这是第一次开始测试和量化该公理,为我们对微生物生态学的理解提供了根本性的转变。在这里,我们将环境测序与生物地球化学相结合,以研究自然生态系统中微生物迁移的基础,即丰度和群落组成以及扩散机制和时间安排的模式。我们的分析着眼于具有高度同一性的基因组DNA支架和片段的存在和相似性,其中数千个分布在从怀俄明州黄石国家公园和内华达州大沸腾泉的热液生态系统采样的两个社区中。结果尽管它们彼此地理隔离并且与周围的嗜温环境物理化学隔离,但是在两个或更多个温泉社区中保存了大量(> 43,000)长的,高身份的DNA支架。几乎相同的DNA片段的广泛分布表明,驱动微生物迁移和基因组信息共享的主动机制。这些支架上编码的基因涵盖了来自多种嗜热类群的广泛代谢能力,但包括揭示了共享基因的功能和分类分布方面的偏见。进化速率分析表明,基因组迁移和共享不仅是近期的和持续的,而且驱动化学营养与光养社区信息交换的机制也非常不同,这种机制包括生物和非生物载体以及灾难性事件,这些事件尤其是进化瓶颈。阳光驱动的光合社区。结论由于生态系统生物学的进步,特别是通过整合来自多个规模和学科的分析数据,生物学与环境的交集受到了前所未有的质疑。本文开发的方法以及我们的研究结果支持的发现,都有助于增进我们对自然环境中微生物生态学和扩散机制的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号