首页> 外文期刊>Electronic Journal of Statistics >A tracking approach to parameter estimation in linear ordinary differential equations
【24h】

A tracking approach to parameter estimation in linear ordinary differential equations

机译:线性常微分方程参数估计的一种跟踪方法

获取原文
       

摘要

Ordinary Differential Equations are widespread tools to model chemical, physical, biological process but they usually rely on parameters which are of critical importance in terms of dynamic and need to be estimated directly from the data. Classical statistical approaches (nonlinear least squares, maximum likelihood estimator) can give unsatisfactory results because of computational difficulties and ill-posed statistical problem. New estimation methods that use some nonparametric devices have been proposed to circumvent these issues. We present a new estimator that shares properties with Two-Step estimators and Generalized Smoothing (introduced by Ramsay et al. [37]). Our estimation method relies on a relaxation and penalization scheme to regularize the inverse problem. We introduce a perturbed model and we use optimal control theory for constructing a criterion that aims at minimizing the discrepancy between data and the original model. Here, we focus on the case of linear Ordinary Differential Equations as our criterion has a closed-form expression that permits a detailed analysis. Our approach avoids the use of a nonparametric estimator of the derivative, which is one of the main causes of inaccuracy in Two-Step estimators. Regarding the theoretical asymptotic behavior of our estimator, we show its consistency and that we reach the parametric $sqrt{n}$-rate when regression splines are used in the first step. We consider the estimation of two models possessing sloppy parameters , which usually makes the estimation of ODE models an ill-posed problem in applications [20, 41] and shows the efficiency of the Tracking estimator. Quite interestingly, our relaxation scheme makes the estimator robust to some kind of model misspecification, as shown in simulations.
机译:普通微分方程是用于化学,物理,生物过程建模的广泛工具,但它们通常依赖于参数,这些参数对于动态性至关重要,需要直接从数据中估算出来。由于计算困难和不适当的统计问题,经典的统计方法(非线性最小二乘,最大似然估计)可能会给出不令人满意的结果。已经提出了使用一些非参数设备的新估计方法来规避这些问题。我们提出了一个新的估计器,该估计器与两步估计器和广义平滑共享属性(由Ramsay等人[37]引入)。我们的估计方法依靠松弛和惩罚方案来正则化反问题。我们介绍了一个扰动模型,并使用最佳控制理论来构建旨在最小化数据与原始模型之间差异的标准。在这里,我们关注线性常微分方程的情况,因为我们的标准具有封闭形式的表达式,可以进行详细分析。我们的方法避免了使用导数的非参数估计量,这是两步估计量中不准确的主要原因之一。关于估计器的理论渐近行为,我们证明了其一致性,并且在第一步中使用回归样条时达到了参数$ sqrt {n} $速率。我们考虑了两个具有草率参数的模型的估计,这通常使ODE模型的估计成为应用中的不适定问题[20,41],并显示了跟踪估计器的效率。有趣的是,我们的松弛方案使估计器对某种模型失准具有鲁棒性,如仿真所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号