首页> 外文期刊>eLife journal >Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly
【24h】

Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly

机译:对斑马鱼中所有PIH蛋白的系统研究表明它们在轴突动力蛋白装配中的独特作用

获取原文
           

摘要

Many cells have long, thin structures called cilia on their surface, some types of which can beat back and forth. This beating motion has many roles; for example, cilia on the cells that line the lungs help to sweep out debris, and the tails of sperm beat to move them forward. A structure called the axonemal dynein complex at the core of the cilia generates the beating motion. When the cell makes new cilia, it assembles the complexes in the main body of the cell and then transports them to the right place, like erecting a prefabricated building. Various proteins help to assemble the complexes, of which there are more than eight types. However, the identities of all of these proteins, and their roles in constructing specific axonemal dynein complexes, is not fully known. Studies in algae have suggested that a family of proteins known as PIH (short for protein interacting with Hsp90) helps to construct axonemal dynein complexes. Zebrafish – which share many of the same protein-encoding genes as humans – produce four PIH family proteins. To investigate the roles that each of these proteins play, Yamaguchi et al. used genetic engineering to create four zebrafish mutants that were each unable to produce a different PIH protein. A technique called cryo-electron microscopy enabled the axonemal dynein complexes in the tails of the sperm produced by the zebrafish to be visualized. The sperm from each mutant lacked specific axonemal dynein complexes, revealing that each PIH protein assembles different complexes. The sperm also had difficulties moving. Yamaguchi et al. examined this movement to deduce how specific complexes affect the ability of the sperm to beat their tails. Further work on how PIH proteins interact with the axonemal dynein complexes will help us to understand how cells make cilia, and what happens when this process goes wrong. This could ultimately help us to treat genetic disorders known as ciliopathies, which arise when cilia do not develop normally.
机译:许多细胞的表面有纤细的长而纤细的结构,某些类型的细胞可以来回跳动。这种跳动动作有许多作用。例如,位于肺部排列的细胞上的纤毛有助于清除碎屑,精子的尾部跳动使它们向前移动。纤毛核心的称为轴突动力蛋白复合物的结构会产生跳动。当牢房产生新的纤毛时,它会在牢房的主体中组装复合物,然后将它们运送到正确的位置,就像建立预制建筑物一样。各种蛋白质有助于组装复合物,其中有八种以上。然而,所有这些蛋白质的身份及其在构建特定的轴突动力蛋白复合物中的作用尚不完全清楚。藻类研究表明,称为PIH(与Hsp90相互作用的蛋白质的简称)的蛋白质家族有助于构建轴突动力蛋白复合物。斑马鱼-与人类共享许多相同的蛋白质编码基因-产生四种PIH家族蛋白质。为了研究这些蛋白质各自发挥的作用,Yamaguchi等人。使用基因工程技术创建了四个斑马鱼突变体,每个突变体均无法产生不同的PIH蛋白。一种称为冷冻电子显微镜的技术可以使斑马鱼产生的精子尾巴中的轴突动力蛋白复合物可视化。每个突变体的精子缺乏特定的轴突动力蛋白复合物,表明每个PIH蛋白组装不同的复合物。精子也难以移动。山口等。研究了这一运动,以推断特定的复合物如何影响精子打尾巴的能力。关于PIH蛋白如何与轴突动力蛋白复合物相互作用的进一步研究将帮助我们了解细胞如何产生纤毛以及该过程出错时会发生什么。这最终可以帮助我们治疗被称为纤毛病的遗传性疾病,这种疾病在纤毛不能正常发育时出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号