首页> 外文期刊>Endocytobiosis and Cell Research >Special Issue: Endocytobiosis and Cell Research of Fungi
【24h】

Special Issue: Endocytobiosis and Cell Research of Fungi

机译:特刊:内生菌与真菌细胞研究

获取原文
           

摘要

The concept of antibiosis was detected in the genus Penicillium in the late 19th century by Ernest Duchesne and was later developed to an instrumental application by Alexander Fleming and his colleagues. Much later, the genes for penicillin synthesis were recognised as acquisitions from bacteria by horizontal gene transfer. The one-gene-one-enzyme conception, shortly after one of the principles of modern genetics, was developed on the basis of heterokarya, formed by anastomoses between auxotrophic mutants of Neurospora crassa by George Beadle and Edward Tatum. It was a phylogenetically old fungus, the zygomycete Phycomyces blakesleeanus, where Max Delbrück and friends characterised the most sensitive bluelight sensing system in biology. Even cytogenetic analysis, a big problem in the fungal realm with the typically annoyingly tiny chromosomes, has had an impressive highlight with Barbara McClintock’s microscopic studies on Neurospora crassa chromosomes. Today, with recent development in laser-scanning microscopy and single-molecule imaging by fluorescence labelling, this is no longer a problem. Consequently, the fungal community has provided us with a wealth of information on the cytoskeleton and especially on the mechanisms of the spindle apparatus. Functional studies on the cell cycle are predominantly based on Schizosaccharomyces pombe as a laboratory model, led to a Nobel award for Paul Nurse. Later, understanding of chromosome function and the possibility for constructing artificial chromosomes in Saccharomyces cerevisiae were also appreciated with the big award to Jack Szostak. All these biological achievements of fundamental importance at the border between cell biology and genetics, including Robin Holliday’s definition of crossover structures, based on genetic work in the corn smut mould Ustilago maydis, have shaped our general picture of biology.
机译:抗菌的概念在19世纪后期由欧内斯特·杜切斯涅(Ernest Duchesne)在青霉属中发现,后来被亚历山大·弗莱明(Alexander Fleming)和他的同事们发展成为一种仪器应用。后来,通过水平基因转移,青霉素合成基因被认为是从细菌中获得的。在现代遗传学的原理之一之后不久的一种基因一酶的概念是在异核生物的基础上发展起来的,异核生物是由乔治·比德尔和爱德华·塔图姆在神经孢子的营养缺陷型突变体之间的吻合形成的。这是一种在系统发育上古老的真菌,即合子霉菌(Phycomyces blakesleeanus),麦克斯·德尔布吕克(MaxDelbrück)和他的朋友们在这里描述了生物学中最敏感的蓝光传感系统。甚至细胞遗传学分析(在真菌领域中通常具有令人讨厌的微小染色体的一个大问题),在芭芭拉·麦克林托克(Barbara McClintock)的Neurospora crassa染色体显微镜研究中也具有令人印象深刻的亮点。如今,随着激光扫描显微镜和通过荧光标记的单分子成像的最新发展,这不再是问题。因此,真菌界为我们提供了有关细胞骨架,尤其是纺锤体机制的大量信息。细胞周期的功能研究主要基于粟酒裂殖酵母(Schizosaccharomyces pombe)作为实验室模型,因此获得了Paul Nurse的诺贝尔奖。后来,对杰克·索斯塔克(Jack Szostak)的大奖也使人们对染色体功能的了解以及在酿酒酵母中构建人工染色体的可能性受到了赞赏。所有这些在细胞生物学和遗传学之间的边界上具有根本重要性的生物学成就,包括罗宾·霍利迪(Robin Holliday)基于玉米黑穗病菌Ustilago maydis的遗传工作对交叉结构的定义,已经塑造了我们的生物学总体图景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号