...
首页> 外文期刊>eLife journal >Specific Eph receptor-cytoplasmic effector signaling mediated by SAM–SAM domain interactions
【24h】

Specific Eph receptor-cytoplasmic effector signaling mediated by SAM–SAM domain interactions

机译:SAM-SAM结构域相互作用介导的特定Eph受体-胞质效应子信号传导

获取原文
           

摘要

As an animal’s body develops, its cells need to find their way to the right place to form its tissues and organs. On top of this, nerve cells need to set up connections as they grow. A family of receptors called Eph receptors help to make this happen. They sit across cell membranes, waiting for signals from molecules called ephrins. Once activated, these receptors interact with other proteins inside the cell. There are 14 different Eph receptors, but the parts inside the cell are similar, with three domains arranged in a set order. Next to the membrane, there is a tyrosine kinase domain, an enzyme that can add a phosphate group to a protein. Then, there is a SAM domain, which interacts with other proteins. Finally, there is a PDZ domain binding motif, which anchors the receptor to the cell's internal skeleton. The similarity between the internal portions of the Eph receptors suggests that they should work in the same way. But, different receptors on the same cell, responding to the same external signal, can have opposite effects. Here, Wang et al. tested each of the 14 SAM domains to find out how this happens. SAM domains on Eph receptors interact with SAM domains on other proteins, including SHIP2 and Odin. Analysis of the interactions revealed specific patterns for each receptor. Even though SAM domains are similar in shape, their exact amino acids – the basic building blocks of proteins – differ at particular positions. This changes the way they interact, allowing them to bind to different partners. Wang et al. then used a technique called X-ray crystallography to reveal the three-dimensional structures of SHIP2 bound to EphA2 and Odin bound to EphA6, to see how the proteins interact in fine detail. It turns out that a piece of each Eph receptor called the “end helix” binds to a “mid-loop” structure in SHIP2 or Odin. Crucial amino acids in each ensure that these interactions are specific. Changing these critical positions prevented the proteins coming together or allowed them to bind to a completely different partner. The structures revealed the importance of negatively charged amino acids within the mid-loop of the Eph binding partners. Using this information, Wang et al. predicted and confirmed a brand-new interaction between EphA5 and one of the 127 SAM-containing proteins found in mice, a protein called SAMD5. Understanding the impact of protein structure on Eph receptors could aid research into human disease. Lastly, an analysis of a database containing genetic changes found in cancer patients revealed that many of the mutations occur inside SAM domains. Pinpointing the positions that affect Eph receptor binding could point the way to future treatments.
机译:随着动物身体的发育,其细胞需要找到正确的位置以形成其组织和器官。最重要的是,神经细胞在成长时需要建立连接。称为Eph受体的受体家族有助于实现这一目标。他们坐在细胞膜上,等待来自叫做ephrins的分子发出的信号。一旦激活,这些受体就会与细胞内的其他蛋白质相互作用。有14种不同的Eph受体,但细胞内部的组成部分相似,三个域按设定顺序排列。在膜的旁边,有一个酪氨酸激酶结构域,一种可以将磷酸基团添加到蛋白质上的酶。然后,有一个与其他蛋白质相互作用的SAM结构域。最后,有一个PDZ域结合基序,将受体锚定在细胞的内部骨架上。 Eph受体内部之间的相似性表明它们应该以相同的方式起作用。但是,同一细胞上对相同外部信号作出响应的不同受体可能产生相反的作用。在这里,王等。测试了14个SAM域中的每一个,以了解如何发生。 Eph受体上的SAM结构域与其他蛋白质(包括SHIP2和Odin)上的SAM结构域相互作用。相互作用的分析揭示了每种受体的特定模式。尽管SAM结构域的形状相似,但它们的确切氨基酸(蛋白质的基本组成部分)在特定位置上有所不同。这改变了他们互动的方式,使他们能够绑定到不同的伙伴。 Wang等。然后使用一种称为X射线晶体学的技术揭示结合到EphA2的SHIP2和结合到EphA6的奥丁的三维结构,以了解蛋白质如何进行精细的相互作用。事实证明,每个Eph受体的一个片段称为“末端螺旋”,都与SHIP2或Odin中的“中环”结构结合。每种氨基酸中的关键氨基酸确保这些相互作用是特异性的。改变这些关键位置可防止蛋白质聚集在一起或使它们与完全不同的伴侣结合。该结构揭示了在Eph结合伴侣的中环内带负电荷的氨基酸的重要性。使用这些信息,王等。他预测并证实了EphA5与小鼠中发现的127种含SAM的蛋白质之一之间的全新相互作用,这种蛋白质称为SAMD5。了解蛋白质结构对Eph受体的影响可能有助于人类疾病的研究。最后,对包含在癌症患者中发现的遗传变化的数据库的分析表明,许多突变都发生在SAM域内。指出影响Eph受体结合的位置可能会为将来的治疗指明道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号