...
首页> 外文期刊>eLife journal >Physical limits to magnetogenetics
【24h】

Physical limits to magnetogenetics

机译:磁致磁学的物理极限

获取原文
           

摘要

How biological systems interact with magnetic fields is of great interest both from a basic science perspective and for technological applications. Certain animal species can sense the Earth’s magnetic field for the purposes of navigation. How that compass sense works is perhaps the last true mystery of sensory biology. If we knew how the magnetic field affects the activity of nerve cells, we could harness that mechanism to create new biomedical tools. One technological goal is to genetically engineer specific cells in the brain or elsewhere so their activity can be controlled using an external magnet. This dream has been called “magnetogenetics”. In recent months a string of reports claimed to have solved both the scientific and the technological challenges of magnetogenetics. They all involved the discovery or the engineering of protein molecules that are sensitive to magnetic fields. Markus Meister has now checked whether those claims were consistent with well-established physical laws. For each case, Meister calculated how strongly the protein in question would link magnetic fields to cellular activity. The results show that the predicted effects are too weak to account for the reported measurements by huge margins between five and ten orders of magnitude. It therefore appears that none of these reports have hit on a solution to magnetogenetics. All of the proposed proteins use iron atoms to couple to the magnetic field, but Meister concludes that these proteins contain far too few iron atoms. How safe is that conclusion? There has been enormous technological interest in making tiny magnets; for example, to design the ever-denser data storage drives inside computers. Hence the magnetism of small clusters of atoms is exceedingly well understood. If any of the biological reports of magnetogenetics turned out correct, they would force a revolutionary rethinking of basic physics. With the recognition that magnetogenetics remains unsolved, and that different approaches are needed, Meister hopes that other investigators will feel motivated to continue innovating in this area.
机译:从基础科学的角度和技术应用的角度来看,生物系统如何与磁场相互作用都倍受关注。某些动物可以出于导航目的而感知地球的磁场。指南针的工作原理也许是感觉生物学的最后一个真正的谜。如果我们知道磁场如何影响神经细胞的活动,我们就可以利用这种机制来创建新的生物医学工具。一个技术目标是对大脑或其他地方的特定细胞进行基因工程改造,以便可以使用外部磁体控制其活动。这个梦想被称为“磁遗传学”。近几个月来,一系列报道声称已经解决了磁致磁学的科学和技术难题。他们都涉及对磁场敏感的蛋白质分子的发现或工程化。马库斯·迈斯特(Markus Meister)现在检查了这些说法是否与公认的自然法则相符。对于每种情况,Meister计算出所讨论的蛋白质将磁场与细胞活动联系起来的强度。结果表明,预测的效果太弱,无法解释报告的测量值,其幅度在5到10个数量级之间。因此,似乎这些报告都没有找到磁致磁学的解决方案。所有提出的蛋白质都使用铁原子耦合到磁场,但是Meister得出结论,这些蛋白质包含的铁原子太少了。这个结论有多安全?制造微型磁体引起了巨大的技术兴趣。例如,设计计算机内部的密度传感器数据存储驱动器。因此,对原子小团簇的磁性非常了解。如果有关磁遗传学的任何生物学报道都正确无误,它们将迫使人们对基础物理学进行革命性的重新思考。认识到磁致磁学仍未解决,需要采取不同的方法,Meister希望其他研究人员有动力继续在这一领域进行创新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号