...
首页> 外文期刊>eLife journal >Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer
【24h】

Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer

机译:TPP核糖开关适体与配体结合期间的远距离三级相互作用的观察

获取原文

摘要

When a gene is switched on, its DNA is first copied to make a molecule of messenger ribonucleic acid (mRNA). The genetic code in the mRNA is then translated into a protein. There are also untranslated regions within mRNAs that do not code for protein themselves, but serve to regulate whether or not a protein is produced from the rest of the mRNA. For example, many mRNAs contain a motif in their untranslated region called a 'riboswitch'. These motifs selectively bind to molecules that are the products of metabolic processes. One riboswitch found in bacteria, animals and plants binds to a molecule known as thiamine pyrophosphate (TPP) and regulates genes that control the uptake of a vitamin called thiamine into cells. Newly made mRNA molecules are linear strands that then fold into three-dimensional structures. The TPP riboswitch can adopt distinct shapes depending on whether it is bound to TPP or not. Knowledge of these structures is crucial for understanding how riboswitches regulate protein production. Previous research reported the folding of a TPP riboswitch from bacteria. Here, Duesterberg et al. used a combination of two techniques known as force spectroscopy and F?rster resonance energy transfer (FRET) to study the folding of the TPP riboswitch from a plant called Arabidopsis thaliana. The experiments show that in the presence of TPP, structural changes occur in two arm-like appendages – known as helix arms – that extend out of the core of the riboswitch. The riboswitch adopts a particular shape when TPP is strongly bound to it, and in this shape the riboswitch can regulate the activity of certain genes. However, if the riboswitch is only weakly associated with TPP, it takes on a shape in which the two helix arms are further apart and the riboswitch is unable to form the interactions required to complete the process of binding to TPP. Duesterberg et al.’s findings reveal that the way in which the A. thaliana riboswitch changes shape when it is bound to TPP is different to that of its bacterial counterpart. The next challenge will be to observe these shape changes in even more detail, and to use these new techniques to study other riboswitches in various organisms.
机译:当一个基因打开时,它的DNA首先被复制成一个信使核糖核酸(mRNA)分子。然后将mRNA中的遗传密码翻译成蛋白质。 mRNA中还存在一些非翻译区域,它们本身并不编码蛋白质,但是可以调节是否从其余的mRNA中产生蛋白质。例如,许多mRNA在其非翻译区包含一个称为“核糖开关”的基序。这些基序选择性地结合作为代谢过程产物的分子。在细菌,动物和植物中发现的一种核糖开关与一种称为硫胺素焦磷酸(TPP)的分子结合,并调节控制称为硫胺素的维生素向细胞内吸收的基因。新产生的mRNA分子是线性链,然后折叠成三维结构。 TPP核糖开关可以根据是否绑定到TPP而采用不同的形状。这些结构的知识对于理解核糖开关如何调节蛋白质生产至关重要。先前的研究报道了TPP核糖开关可从细菌折叠。在这里,杜斯特伯格等。我们结合使用了两种称为力谱技术和Fsterster共振能量转移(FRET)的技术来研究拟南芥植物中TPP核糖开关的折叠。实验表明,在存在TPP的情况下,结构变化发生在两个伸向核糖开关核心之外的臂状附件(称为螺旋臂)中。当TPP牢固结合时,核糖开关呈特定形状,在这种形状下,核糖开关可调节某些基因的活性。但是,如果核糖开关仅与TPP弱相关,则呈两个螺旋臂进一步分开的形状,并且核糖开关无法形成完成与TPP结合过程所需的相互作用。 Duesterberg等人的发现揭示,拟南芥核糖开关与TPP结合时改变形状的方式与其细菌配对物不同。下一个挑战将是更详细地观察这些形状变化,并使用这些新技术来研究各种生物中的其他核糖开关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号