...
首页> 外文期刊>eLife journal >Nucleosome breathing and remodeling constrain CRISPR-Cas9 function
【24h】

Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

机译:核小体的呼吸和重塑限制了CRISPR-Cas9的功能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

CRISPR is a method of editing the genetic material inside living cells and has enabled dramatic advances in a broad variety of research fields in recent years. The method relies on a bacterial enzyme called Cas9 that can be programmed, via short guide molecules made from RNA, to target specific sites in the cell’s DNA. Once bound to its target, the Cas9 enzyme cuts the DNA molecule; this often leads to changes in the DNA sequence. In nature, bacteria use the CRISPR-Cas9 system to defend themselves against viruses. However, this system also works in other cell types and can be reprogrammed to target almost any site in the DNA. To date, the CRISPR-Cas9 system has been used in fungi, worms, flies, plants, mammals and other eukaryotes. Yet, unlike in bacteria, much of the DNA in eukaryotes is wrapped around proteins called histones to form units referred to as nucleosomes. This means eukaryotic DNA is often tightly packaged, which makes it less accessible to other proteins. Nevertheless, eukaryotic DNA will spontaneously detach and reattach to the histones – a phenomenon that is commonly known as DNA “breathing”. Also, protein machines known as chromatin remodelers can move, assemble and take apart the nucleosomes in eukaryotic cells. However, because there is much still to learn about how CRISPR-Cas9 works in eukaryotic cells, it is not clear how nucleosomes affect this system’s activity. Isaac et al. have now used a simplified biochemical system to test how nucleosomes and chromatin remodelers affect CRISP-Cas9 activity. The system comprised purified Cas9 enzymes, short guide RNA molecules and nucleosomes. The experiments revealed that the Cas9 enzyme was able to cut DNA on nucleosomes when the DNA sequence allowed more spontaneous breathing or when chromatin remodelers were present to destabilize or move the nucleosome out of the way. These results suggest that by taking the placement of the nucleosomes into account, researchers can better predict how effective the CRISPR-Cas9 system will be at targeting a specific DNA sequence in a eukaryotic cell. The findings also suggest ways to make genome editing with CRISPR-Cas9 even more efficient.
机译:CRISPR是一种编辑活细胞内部遗传物质的方法,近年来已在众多研究领域取得了巨大进展。该方法依靠一种称为Cas9的细菌酶,该酶可以通过RNA制成的短链分子进行编程,以靶向细胞DNA的特定位点。一旦与目标结合,Cas9酶就会切割DNA分子。这通常会导致DNA序列发生变化。在自然界中,细菌使用CRISPR-Cas9系统防御病毒。但是,该系统也可以在其他细胞类型中使用,并且可以重新编程以靶向DNA中的几乎任何位点。迄今为止,CRISPR-Cas9系统已被用于真菌,蠕虫,苍蝇,植物,哺乳动物和其他真核生物。但是,与细菌不同,真核生物中的许多DNA都被包裹在称为组蛋白的蛋白质周围,形成称为核小体的单元。这意味着真核生物DNA通常被紧密包装,这使得其他蛋白质难以接近。然而,真核DNA会自发地脱离并重新附着在组蛋白上,这种现象通常被称为DNA“呼吸”。而且,称为染色质重塑剂的蛋白质机器可以移动,组装和分解真核细胞中的核小体。但是,由于还有很多关于CRISPR-Cas9在真核细胞中如何工作的知识,尚不清楚核小体如何影响该系统的活性。艾萨克等人。现在已使用简化的生化系统测试核小体和染色质重塑剂如何影响CRISP-Cas9活性。该系统包含纯化的Cas9酶,短链RNA分子和核小体。实验表明,当DNA序列允许更多的自发呼吸或存在染色质重塑剂使核小体不稳定或移开时,Cas9酶能够在核小体上切割DNA。这些结果表明,通过考虑核小体的位置,研究人员可以更好地预测CRISPR-Cas9系统将如何靶向真核细胞中的特定DNA序列。这些发现还提出了使CRISPR-Cas9基因组编辑更加有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号