首页> 外文期刊>eLife journal >Computer-guided design of optimal microbial consortia for immune system modulation
【24h】

Computer-guided design of optimal microbial consortia for immune system modulation

机译:免疫系统调节的最佳微生物联盟的计算机指导设计

获取原文
       

摘要

The role of the immune system is to protect the body from infection. It does this by using a powerful toolkit that isolates pathogens and removes damaged tissue. When directed against bacteria and viruses, the system helps to keep the body safe, but an imbalance of the components of the immune system can lead to inflammatory or allergic diseases. The body has built-in mechanisms to shut off the immune response. For example, regulatory T-cells are immune cells with an anti-inflammatory effect, meaning they can switch off inflammation after the immune system has cleared an invasion. If their numbers are too low, it can contribute to unwanted inflammation. In ulcerative colitis, for instance, an unbalanced immune system mistakenly attacks healthy tissue. This causes inflammation and ulcers in the intestine, resulting in bleeding and weight loss. Previous studies revealed that bacteria in the gut might help to control regulatory T-cell numbers. Certain combinations of bacteria can stimulate these regulatory T-cells and potentially dampen inflammation. Tweaking the different populations of microbes in the gut could provide a new way to treat diseases like ulcerative colitis. But, identifying the best combination to use is a major challenge. Testing them all one by one would be extremely challenging. Now, Stein, Tanoue et al. present a mathematical model designed to predict the best microbe-mix to use. The model incorporated data from regulatory T-cells and microbes gathered from mice to estimate the contribution that different strains of bacteria make to regulatory T-cell numbers. This then fed into an ecological model predicted how different combinations of bacteria would behave in mice. The model aimed to fulfill two key criteria. First, to find combinations that can form stable, long-term bacterial colonies alone and when faced with competing microbes. Second, to boost regulatory T-cell numbers, helping them to expand to correct the immune imbalance. To test the predictions, mice received combinations of bacteria suggested by the model. The model had predicted some combinations to be 'weak' at inducing regulatory T-cells, some 'intermediate' and some 'strong'. The results matched the predictions, validating the method. This new model allows the rapid design of microbes that could dampen the immune response in the gut and paves the way for new treatments to correct imbalances of the immune system. By using already available data, it should be possible to expand the model to other diseases with imbalance in the immune system. In future, similar models could also find combinations for other medical uses. For example, to optimise the delivery of cancer immunotherapy, or to modulate the immune system after an organ transplant.
机译:免疫系统的作用是保护人体免受感染。它通过使用功能强大的工具包来做到这一点,该工具包可分离病原体并去除受损的组织。当针对细菌和病毒时,该系统有助于保持身体安全,但是免疫系统各组成成分的失衡会导致炎症或过敏性疾病。身体具有内置机制来关闭免疫反应。例如,调节性T细胞是具有抗炎作用的免疫细胞,这意味着它们可以在免疫系统清除侵袭后关闭炎症。如果它们的数量太少,则可能导致有害的炎症。例如,在溃疡性结肠炎中,免疫系统失衡会错误地攻击健康组织。这会导致肠道发炎和溃疡,导致出血和体重减轻。先前的研究表明,肠道中的细菌可能有助于控制调节性T细胞的数量。细菌的某些组合可以刺激这些调节性T细胞并潜在地减轻炎症。调整肠道中不同的微生物种群可能提供治疗溃疡性结肠炎等疾病的新方法。但是,确定要使用的最佳组合是一项重大挑战。一个接一个地测试它们将极具挑战性。现在,斯坦因,塔努埃等人。提出了一种数学模型,旨在预测要使用的最佳微生物混合物。该模型结合了来自小鼠的调节性T细胞和微生物的数据,以估计不同细菌菌株对调节性T细胞数量的贡献。然后将其输入生态模型中,以预测不同的细菌组合在小鼠中的行为。该模型旨在满足两个关键标准。首先,寻找可以单独和面对竞争性微生物形成稳定的长期细菌菌落的组合。第二,增加调节性T细胞的数量,帮助它们扩展以纠正免疫失衡。为了检验这些预测,小鼠接受了该模型建议的细菌组合。该模型预测,在诱导调节性T细胞时,某些组合“微弱”,一些“中间”和一些“强”。结果与预测相符,验证了该方法。这种新模型可以快速设计微生物,从而可以减轻肠道的免疫反应,并为纠正免疫系统失衡的新疗法铺平道路。通过使用已经可用的数据,应该可以将模型扩展到免疫系统失衡的其他疾病。将来,类似的模型也可以找到其他医疗用途的组合。例如,优化癌症免疫疗法的递送,或调节器官移植后的免疫系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号