...
首页> 外文期刊>eLife journal >Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model
【24h】

Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model

机译:抑制作用增强了生物受限模型中突触输入模式的空间特异性钙编码

获取原文
           

摘要

How do we form new memories? The human brain contains almost 90 billion neurons, which communicate with one another at junctions called synapses. Each neuron has a shape a little like that of a tree, and is covered in branches called dendrites. Synapses typically form between the end of one neuron and a dendrite on another. Most scientists believe that the brain forms new memories by changing the strength of these synapses. But a number of questions remain about how this process works. There are two types of synapses excitatory and inhibitory. When an excitatory synapse becomes active, calcium ions flow into the dendrite of the receiving neuron. The calcium ions then trigger processes inside the cell that are essential for changing the strength of the synapse, and thus forming a memory. But what happens when an inhibitory synapse becomes active? How does this affect memory? Additionally, each neuron forms synapses with thousands of others, with several synapses on a single dendrite. To form a memory about a specific experience, the brain must strengthen only the synapses that relate to that experience. How does the brain manage to target these synapses specifically? Do the synapses need to be clustered on the same dendritic branch, or can they be spread apart? And do all the synapses need to be active at exactly the same time? Dorman et al. investigated these questions by developing a computer model of a neuron. Testing the model revealed that the synapses related to an experience do not all need to be active at exactly the same time to form a memory. Moreover, the synapses can be spread across multiple dendrites. Finally, the model showed that inhibitory synapses are critical for preventing calcium ions from spreading within dendritic branches and entering inactive synapses. This ensures that only the synapses active during a specific experience become stronger. Many brain disorders, including substance abuse and addiction, involve errors in the processes that underlie learning and memory. By increasing our understanding of how the structure of brain cells supports these processes, the current findings could one day lead to better treatments for these and other disorders.
机译:我们如何形成新的记忆?人脑包含近900亿个神经元,它们在称为突触的连接处相互通信。每个神经元的形状都类似于树的形状,并被称为树突的树枝覆盖。突触通常在一个神经元的末端与另一神经元的树突之间形成。大多数科学家认为,大脑通过改变这些突触的强度来形成新的记忆。但是,有关此过程如何工作仍存在许多问题。突触有兴奋性和抑制性两种。当兴奋性突触活跃时,钙离子流入接收神经元的树突中。钙离子然后触发细胞内部的过程,这些过程对于改变突触的强度至关重要,从而形成记忆。但是,当抑制性突触激活时会发生什么呢?这如何影响内存?此外,每个神经元与其他数千个神经元形成突触,单个树突上具有多个突触。为了形成对特定体验的记忆,大脑必须仅增强与该体验相关的突触。大脑如何专门针对这些突触?突触是否需要聚集在同一个树突分支上,或者它们可以分开分布?是否所有突触都需要在同一时间激活? Dorman等。通过开发神经元的计算机模型研究了这些问题。对模型的测试表明,与体验相关的突触并不需要完全同时激活以形成记忆。此外,突触可分布在多个树突上。最后,该模型表明抑制性突触对于防止钙离子在树突状分支内扩散并进入无活性突触至关重要。这样可以确保只有在特定经历中活跃的突触才能变得更强。许多脑部疾病,包括药物滥用和成瘾,都涉及学习和记忆的基础过程中的错误。通过增加我们对脑细胞结构如何支持这些过程的理解,当前的发现有一天可能导致对这些疾病和其他疾病的更好治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号