首页> 外文期刊>Frontiers in Cellular Neuroscience >T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input
【24h】

T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input

机译:在模仿突触输入的自然模式期间,T型钙离子通道会导致运动爆发,但不会引起丘脑神经元突增

获取原文
       

摘要

Although neurons within intact nervous systems can be classified as ‘sensory’ or ‘motor,’ it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of ‘predictive homeostasis’ to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced (‘H-type’) depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
机译:尽管完整神经系统中的神经元可以归类为“感觉”或“运动”,但尚不清楚在细胞或分子水平上感觉神经元和运动神经元之间是否有任何一般区别。在这里,我们扩展并测试了一种理论,根据该理论,电压门控离子通道(VGC)的某些亚型的激活会生成运动系统神经元中的尖峰模式,而VGC被提出来抵消感觉神经元中的模式。先前我们从视觉丘脑报道了该理论的实验证据,我们发现T型钙通道(TtCC)不会引起突波爆发,而起着“预测稳态”的作用,从而最大化了视网膜生成兴奋之间的因果关系和信息联系和尖峰输出。在这里,我们已经记录了大鼠丘脑的八个感觉和运动区域的大脑切片中的神经元,同时模仿了自然兴奋性和抑制性突触后电位的关键特征。正如理论所预测的,TtCC确实引起了运动丘脑的突波爆发。与视觉和听觉丘脑相比,运动性丘脑中的TtCC介导的反应在更高的超极化电位下被激活,并导致更大的去极化和更多的尖峰。相对于听觉和视觉丘脑,体感性丘脑与运动区域的联系更为紧密,同样,其TtCC反应的强度介于这些区域和运动丘脑之间。我们还观察到在接近电机输出的原子核中,较低的输入电阻以及较强的超极化诱导的“ H型”去极化的证据有限。这些发现支持了我们关于细胞水平上的感觉神经和运动神经元之间特定差异的理论。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号