首页> 美国卫生研究院文献>eLife >Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model
【2h】

Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model

机译:抑制作用增强了生物受限模型中突触输入模式的空间特异性钙编码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synaptic plasticity, which underlies learning and memory, depends on calcium elevation in neurons, but the precise relationship between calcium and spatiotemporal patterns of synaptic inputs is unclear. Here, we develop a biologically realistic computational model of striatal spiny projection neurons with sophisticated calcium dynamics, based on data from rodents of both sexes, to investigate how spatiotemporally clustered and distributed excitatory and inhibitory inputs affect spine calcium. We demonstrate that coordinated excitatory synaptic inputs evoke enhanced calcium elevation specific to stimulated spines, with lower but physiologically relevant calcium elevation in nearby non-stimulated spines. Results further show a novel and important function of inhibition—to enhance the difference in calcium between stimulated and non-stimulated spines. These findings suggest that spine calcium dynamics encode synaptic input patterns and may serve as a signal for both stimulus-specific potentiation and heterosynaptic depression, maintaining balanced activity in a dendritic branch while inducing pattern-specific plasticity.
机译:构成学习和记忆基础的突触可塑性取决于神经元中钙的升高,但尚不清楚钙与突触输入的时空模式之间的确切关系。在这里,我们基于来自两性啮齿动物的数据,开发了具有复杂钙动力学的纹状体棘突状投射神经元的生物学现实计算模型,以研究时空聚集和分布的兴奋性和抑制性输入如何影响脊柱钙。我们证明协调的兴奋性突触输入引起增强的钙升高,特定于受刺激的刺,与较低但生理上相关的钙升高在附近的非受刺激的刺中。结果进一步显示出一种新颖而重要的抑制功能-增强受刺激的和未受刺激的刺之间的钙差异。这些发现表明,脊柱钙动力学编码突触输入模式,并且可以作为刺激特异性增强和异突触抑制的信号,在树突状分支中维持平衡的活性,同时诱导模式特异性可塑性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号