...
首页> 外文期刊>eLife journal >Assessing long-distance RNA sequence connectivity via RNA-templated DNA–DNA ligation
【24h】

Assessing long-distance RNA sequence connectivity via RNA-templated DNA–DNA ligation

机译:通过RNA模板DNA–DNA连接评估长距离RNA序列的连通性

获取原文
           

摘要

A flow chart can show how an outcome can be achieved from a particular start point by breaking down an activity into a list of possible steps. Often, a flow chart contains several alternative steps, not all of which are taken every time the flow chart is used. The same can be said of genes, which are biological instructions that often contain many options within their DNA sequences. Proteins—which perform many roles in cells—are built following the instructions contained in genes. First, the DNA sequence of the gene is copied. This produces a molecule of ribonucleic acid (RNA), which is able to move around the cell to find the machinery that can use the genetic information to make a protein. Genes and their RNA copies contain instructions with more steps—called exons—than are necessary to make a working protein, so extra exons are removed (‘spliced’) from the RNA copies. Different combinations of exons can be removed, so splicing can make different versions of the RNA called isoforms. These allow a single gene to build many different proteins. In fruit flies, for example, the different exons of the gene Dscam1 can be spliced into one of 38,016 unique RNA isoforms. Current technology only allows researchers to deduce the sequence of RNA molecules by combining sequences recorded from short fragments of the molecule. However, before splicing, RNA molecules tend to be much longer than this, so this restricts our understanding of the RNA isoforms found in cells. Here, Roy et al. devised and tested a new method called SeqZip to solve this problem. SeqZip uses short fragments of DNA called ligamers that can only stick to the sections of RNA that will remain after the molecule has been spliced. After splicing, the ligamers can be stuck together to make a DNA replica of the spliced RNA. The end product is at least 49 times shorter than the original RNA, so it is easier to sequence. In addition, the combinations of the ligamers in the DNA replica show which exons of a specific gene are kept and which ones are spliced out. To test the method, Roy et al. studied a mouse gene that has six RNA isoforms. SeqZip reduced the length of the RNA by five times and made it possible to measure how frequently the different isoforms naturally arise. Roy et al. also used SeqZip to work out which isoforms of the Dscam1 gene are used at different stages in the life of fruit fly larvae. SeqZip can provide insights into how complex organisms like flies, mice, and humans have evolved with relatively few—a little over 20,000—genes in their genomes.
机译:流程图可以显示如何通过将活动分解为可能的步骤列表来从特定的起点实现结果。流程图通常包含几个替代步骤,并非每次使用流程图时都会采取所有替代步骤。可以说基因也一样,它们是生物学指令,通常在其DNA序列中包含许多选择。蛋白质-在细胞中起着许多作用-是按照基因中包含的说明构建的。首先,复制基因的DNA序列。这会产生一个核糖核酸(RNA)分子,该分子能够在细胞周围移动,从而找到可以利用遗传信息制造蛋白质的机制。基因及其RNA拷贝包含的指令具有更多步骤(称为外显子),而不是制造正常蛋白质所必需的,因此,多余的外显子将从RNA拷贝中去除(“剪接”)。可以去除外显子的不同组合,因此剪接可以产生称为同种型的RNA的不同版本。这些允许单个基因构建许多不同的蛋白质。例如,在果蝇中,可以将基因Dscam1的不同外显子剪接成38,016种独特的RNA同种型之一。目前的技术仅允许研究人员通过结合从分子短片段记录的序列来推断RNA分子的序列。但是,在剪接之前,RNA分子的长度往往比这更长,因此这限制了我们对细胞中发现的RNA异构体的理解。在这里,罗伊等。设计并测试了一种名为SeqZip的新方法来解决此问题。 SeqZip使用称为Ligamers的DNA短片段,该片段只能粘附在分子被剪接后仍会保留的RNA片段上。剪接后,可将连接子粘在一起以形成剪接RNA的DNA复制体。最终产物比原始RNA短至少49倍,因此测序更容易。另外,DNA复制物中的ligamers的组合显示出保留了特定基因的哪些外显子,以及剪接了哪些。为了测试该方法,Roy等。研究了一种具有六个RNA亚型的小鼠基因。 SeqZip将RNA的长度减少了五倍,并使得测量不同同工型天然出现的频率成为可能。罗伊等。还使用了SeqZip来研究Dscam1基因的哪些同工型在果蝇幼虫的生命的不同阶段使用。 SeqZip可以洞察苍蝇,小鼠和人类等复杂的生物如何进化,其基因组中只有相对较少的基因(超过20,000个)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号