...
首页> 外文期刊>Electronic Colloquium on Computational Complexity >Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness
【24h】

Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

机译:加权多项式逼近:学习和伪随机性的极限

获取原文

摘要

Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function.Firstly, the “polynomial regression” algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on R n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp ( ? x 0 99 ) . Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O ( log (1 )) -wise independence, for a tail probability of . We show that their results are tight up to constant factors.These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.
机译:布尔函数的多项式逼近已在计算机科学中产生了许多积极的结果。尤其是,符号函数的多项式逼近法在用于不可知论地学习半空间的算法以及用于半空间的伪随机发生器的基础上。在这项工作中,我们通过证明符号函数的逼近结果来研究这些技术的局限性。首先,Kalai等人的“多项式回归”算法。 (SIAM J. Comput。2008)表明,在具有挑战性的不可知论学习模型中,可以根据R n上的对数凹面分布来学习半空间。该算法的能力取决于以下事实:在对数凹面分布下,半空间可以通过低次多项式任意近似地近似。我们询问该技术是否可以扩展到超出对数凹面分布的范围,并得出负面结果。我们表明,对于实线上的一大类非对数凹面分布,包括密度与exp(?x 0 99)成正比的分布,任何程度的多项式都无法将符号函数近似在任意低的误差范围内。其次,我们研究了Chernoff型浓度不等式的去随机化。独立随机变量之和的Chernoff型尾边界在理论计算机科学中具有普遍的应用。 Schmidt等。 (SIAM J. Discrete Math。1995)表明,对于只有O(log(1))方向独立性的随机变量之和,对于尾部概率为,可以建立这些不等式。我们证明了它们的结果受恒定因子的约束。这些结果依赖于加权逼近理论的技术,该理论研究了多项式在各种分布下可以逼近实线上的函数。我们相信这些技术将在计算机科学的其他领域中进一步应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号