首页> 外文期刊>Ecosphere >Ontogenetic differences in Atlantic salmon phosphorus concentration and its implications for cross ecosystem fluxes
【24h】

Ontogenetic differences in Atlantic salmon phosphorus concentration and its implications for cross ecosystem fluxes

机译:大西洋鲑鱼磷浓度的个体发育差异及其对跨生态系统通量的影响

获取原文
           

摘要

Nutrient transport across ecosystem boundaries by migratory animals can regulate trophic and biogeochemical dynamics of recipient ecosystems. The magnitude and direction of net nutrient flow between ecosystems is modulated by life history, abundance and biomass, individual behavior, and body element composition of migrating individuals. We tested common assumptions applied to nutrient transport models regarding homeostasis of species' body element composition across space and ontogenetic stage. We quantified whole body phosphorus (P) concentration of three life stages of wild Atlantic salmon ( Salmo salar L.) from three distinct populations in Newfoundland, Canada, to evaluate the importance of river of origin and life stage as predictors of salmon %P. We found that life stage was a more important predictor of salmon %P than river of origin, and that %P of post‐spawn adults migrating downstream to the ocean (i.e., kelts) was more similar to %P of juveniles migrating downstream to the ocean (i.e., smolts) than it was to %P of adults migrating upstream to spawn. We then compared nutrient flux for the three rivers over a 20‐year period calculated with body composition values extracted from existing literature and our direct measurements to evaluate how assumptions regarding spatial and ontogenetic homogeneity in salmon %P influenced the observed P fluxes. We demonstrate that assuming equality of kelt %P and adult %P results in an overestimate of net nutrient flux to rivers by Atlantic salmon and the erroneous conclusion that Atlantic salmon populations are unconditional sources of nutrients to their natal watersheds. Instead, Newfoundland's salmon populations are conditional sinks of freshwater P, which is the opposite functional role of Pacific salmon. Our results highlight that a better understanding of intraspecific variation in body element composition of fishes is a prerequisite to determining their role in global biogeochemical cycling.
机译:迁徙动物跨越生态系统边界的营养运输可以调节受体生态系统的营养和生物地球化学动力学。生态系统之间净养分净流量的大小和方向受生活史,丰富度和生物量,个体行为以及迁移个体的身体元素组成的调节。我们测试了适用于营养物运输模型的常见假设,这些假设涉及物种在空间和个体发育阶段体内元素组成的稳态。我们对来自加拿大纽芬兰的三个不同种群的野生大西洋鲑鱼(Salmo salar L.)的三个生命阶段的全身磷(P)浓度进行了量化,以评估河流和生命阶段作为鲑鱼%P预测因子的重要性。我们发现生命阶段是鲑鱼%P的重要指标,而不是起源河,而且产卵后成虫向下游迁移到海洋(即凯尔特)的%P与下游向成鱼迁移的幼鱼的%P更相似。海洋(即,软体动物)比成年向上游迁移以产卵的成年鸟类要多。然后,我们将20年间计算出的三条河流的养分通量与从现有文献中提取的身体成分值以及我们的直接测量结果进行了比较,以评估关于鲑鱼%P的空间和个体同源性的假设如何影响观测到的P通量。我们证明,假设海藻%P和成年%P相等会导致大西洋鲑鱼向河流净养分通量的过高估计,以及一个错误的结论,即大西洋鲑鱼种群是其出生流域的无条件养分来源。相反,纽芬兰的鲑鱼种群是有条件的淡水磷汇,这与太平洋鲑鱼的功能相反。我们的结果强调,对鱼类体内元素组成的种内变异的更好了解是确定鱼类在全球生物地球化学循环中的作用的前提。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号