首页> 外文期刊>ISIJ international >Validation and Simulation of Cellular Automaton Model for Dendritic Growth during the Solidification of Fe–C Binary Alloy with Fluid Flow
【24h】

Validation and Simulation of Cellular Automaton Model for Dendritic Growth during the Solidification of Fe–C Binary Alloy with Fluid Flow

机译:Fe-C二元合金流体流动凝固过程中树突状生长元胞自动机模型的验证与仿真

获取原文
           

摘要

Based on our previous developed 2D CA-FVM model, where the transport phenomna and kinetics conditions of solute-driven dendritic growth occurred in the solidification process with fluid flow were totally taken into consideration, an extensive model validation and furhter model application are demonstrated here. Firstly, the flow pattern of the lid-driven cavity is well predicted and quantitatively coincides with the classic benchmark solutions, as Re is in the range of 100 to 3200. Secondly, the numerical simulations of the free dendritic growth of Fe-0.82 wt%C alloy in the static undercooled melt and the convectional undercooled melt agree well with the LGK predictions in a relatively low undercooling range and the Oseen-Ivantsov solutions, respectively. After the detailed model validation, numerical simulations of the equiaxed/columnar dendritic growth of Fe-0.82 wt%C alloy with fluid flow have been carried out and the results show that the dendrite morphologies and solute profiles are significantly affected by the fluid flow and the asymmetries of the dendrite morphologies and solute profiles become more and more serious with the increase of the flow Péclet number. For the equiaxed dendritic growth in the undercooled melt with fluid flow, the solute is washed away from the upstream to the downstream region, resulting in accelerating the dendritic growth of the upstream tip and perpendicular tip and inhibiting the dendritic growth of the downstream tip. For the columnar dendritic growth in the lid-driven cavity, the circulation flow facilitates the side branch of the dendrite trunk edge, which faces to the incoming flow, and promotes the asymmetrical dendrite morphology and solute profile.
机译:基于我们先前开发的二维CA-FVM模型,其中完全考虑了在流体流动的凝固过程中发生的溶质驱动的树枝状晶体的传输现象和动力学条件,在此进行了广泛的模型验证和更进一步的模型应用。首先,盖子驱动型腔的流动模式得到了很好的预测,并且在定量上与经典基准解决方案一致,因为Re的范围在100到3200之间。其次,Fe-0.82 wt%的自由枝晶生长的数值模拟静态过冷熔体和对流过冷熔体中的C合金分别在相对较低的过冷范围和Oseen-Ivantsov解决方案中与LGK预测非常吻合。经过详细的模型验证后,进行了Fe-0.82 wt%C合金等轴/柱状枝晶生长与流体流动的数值模拟,结果表明,流体流动和熔体流动对枝晶形态和溶质分布有显着影响。随着流动佩克利数的增加,枝晶形态和溶质分布的不对称性变得越来越严重。为了使过冷熔体中的等轴枝晶生长随流体流动,溶质从上游流向下游区域,从而加速了上游尖端和垂直尖端的树枝状生长并抑制了下游尖端的树枝状生长。对于盖驱动腔中的柱状枝晶生长,循环流促进了枝晶主干边缘的侧向分支,该分支面对进入的流,并促进了不对称枝晶的形态和溶质分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号