首页> 外文期刊>International Soil and Water Conservation Research >Monitoring and predicting the soil water content in the deeper soil profile of Loess Plateau, China
【24h】

Monitoring and predicting the soil water content in the deeper soil profile of Loess Plateau, China

机译:黄土高原深层土壤水分监测与预测

获取原文
           

摘要

Abstract Estimation of soil water content (SWC) in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones, as well as for soil and water conservation. Soil properties have a very important effect on SWC. This study aimed to analyze the influence of soil particle size on SWC, for the first time using soil particle size to estimate SWC in deep soil profiles. SWC was measured mainly in farmland, natural grasslands and plantations of Caragana from the surface to more than 20?m depth. The same soil samples were also tested for particle size. The results show that the soil desiccation is formed in the caragana forest in 3–18?m soil layers, but almost no formation in 18–24?m layers; water content of farmland and grassland is different in all soil profiles although they are both shallow rooted plants. Correlation analysis indicated that SWC could be well predicted by clay content and the close correlation between SWC and clay content yielded a coefficient of determination ( R 2) of 0.82 and 0.72, respectively, for farmland and grassland. After multiple regression analysis, a regression model was built using SWC, clay content and sand content data, giving R 2=0.66. The model provided reliable estimates of SWC profile based on textural class. This can assist in estimating water depletion by vegetation, by comparing moisture of farmland and grassland soils with that of plantation forests, and in selecting sustainable land use of arid land. Keywords Clay content ; Field capacity ; Sand content ; Soil water content (SWC) ; Soil particle size prs.rt("abs_end"); 1. Introduction Soil water content (SWC) is used to calculate “the available water storage capacity, which is defined as the moisture held between field capacity (FC) and permanent wilting point (PWP)” and is critical for practical application which is related to agricultural, water and soil resources management ( Rao (1998) and Starks, Heathman, Ahujab, & Ma (2003) ). It is also a critical factor in evaluating the suitability of the given vegetation in that region. The transmissivity parameters (e.g., soil hydraulic conductivity vs. SWC relationships) used in physically-based models that make basic assumptions of soil uniformity and homogeneity, are also highly sensitive to SWC ( Givia, Prasher, & Patel, 2004 ). However, direct measurement of SWC is usually hard, expensive and time-consuming for most researches and management applications, especially on a relatively large scale. When the researched area is relatively homogeneous in its physical soil makeup and topography, SWC is related to other physical characteristics such as particle size distribution, structure, bulk density and organic matter content ( Rao, 1998 ). It is possible to develop empirical relationships that provide adequate estimates of SWC through numbers of sampling sites which are inexpensive and easy to access. Most methods are named pedotransfer functions (PTFs) ( Bouma & Van Lanen, 1987 ). Correlations between soil properties (SWC, organic carbon content, and percentage of sand, silt, clay etc.) have been studied since early in the twentieth century ( Briggs & Shantz (1912) , Salter & Williams (1965) and Doorenbos and Pruitt, 1977 ). With the development of computer modeling and databases, more PTFs have been developed ( Rawls, Gish, & Brakensiek, 1991 ; W?sten, Pachepsky, & Rawls, 2001 ). Rawls, Brakensiek, and Saxton (1982) developed PTFs using 5350 sets of soil data. Baumer (1992) developed PTFs using 18 000 soil horizon measurements from the US National Soil Pedon Characterization database to predict SWCs at FC and wilting point (WP). W?sten, Lilly, Nemes, and Le Bas (1999) proposed PTFs based on the HYPRES database that contains 5521 sets of soil data. Bruand, Perez Fernandez, and Duval (2003) formulated PTFs use particle size and bulk density to calculate gravimetric water content at 7 water potentials. Furthermore, the accuracy of PTFs in predicting the SWC has been evaluated. Givia et al. (2004) showed that the PTFs developed for soils having similar characteristics to those being studied generally perform better than others. Cornelis, Ronsyn, Van Meirvenne, and Hartmann (2001) presented that a PTF performs much better if it is used to the developed region. However, concrete measurement of the required soil characteristics is not practicable and the present PTFs are most be developed for estimating water retention and available water content in surface soil ( Schaap, Nemes, & Van Genuchten, 2004 ). Currently, we can only get a crude spatial distribution of soil textural composition by field survey ( Starks et al., 2003 ). Particle-size composition could be related to FC, WP, and available water content via regression equation ( Pidgeon, 2006 ). The relationships predicting SWC have been developed from those found in different countries, including England ( Pidgeon, 2006 ), USA
机译:摘要深层土壤剖面中的土壤含水量估算对于水资源战略管理,干旱和半干旱地区的可持续土地利用以及水土保持至关重要。土壤性质对SWC有非常重要的影响。这项研究旨在分析土壤粒径对SWC的影响,这是首次使用土壤粒径估算深层土壤剖面中的SWC。 SWC的主要测量对象是农田,天然草原和柠条植物,从表层到超过20?m的深度。还测试了相同的土壤样品的粒度。结果表明,柠条林在3–18?m的土壤层中形成了土壤干燥,而在18-24?m的层中几乎没有形成。农田和草地的水分含量在所有土壤剖面中都不同,尽管它们都是浅根植物。相关分析表明,粘土含量可以很好地预测SWC,而SWC与粘土含量之间的紧密相关性得出农田和草地的测定系数(R 2 )分别为0.82和0.72。经过多元回归分析,利用SWC,黏土含量和含沙量数据建立了回归模型,得出R 2 = 0.66。该模型基于纹理分类提供了可靠的SWC轮廓估计。通过将农田和草原土壤的水分与人工林的水分进行比较,以及选择干旱土地的可持续土地利用,这可以帮助估算植被的耗水量。关键词粘土含量;现场能力;含沙量;土壤含水量(SWC);土壤粒径prs.rt(“ abs_end”); 1.引言土壤含水量(SWC)用于计算“可用储水量,定义为田间持水量(FC)和永久枯萎点(PWP)之间的水分”,对于相关的实际应用至关重要农业,水和土壤资源管理(Rao(1998)和Starks,Heathman,Ahujab,&Ma(2003))。这也是评估该地区给定植被的适宜性的关键因素。基于物理模型的土壤模型的透射率参数(例如,土壤水力传导率与SWC的关系)也对SWC高度敏感(Givia,Prasher和Patel,2004)。然而,对于大多数研究和管理应用,尤其是在较大规模的情况下,直接测量SWC通常很困难,昂贵且耗时。当研究区域的物理土壤组成和地形相对均匀时,SWC与其他物理特征有关,例如粒度分布,结构,堆积密度和有机质含量(Rao,1998)。可以建立经验关系,通过数量不多且易于获取的采样点来提供足够的SWC估计。大多数方法被称为pedotransfer函数(PTF)(Bouma&Van Lanen,1987)。自20世纪初以来(Briggs和Shantz(1912),Salter&Williams(1965)以及Doorenbos和Pruitt,19)开始研究了土壤特性(SWC,有机碳含量以及沙子,淤泥,粘土等的百分比)之间的相关性。 1977)。随着计算机建模和数据库的发展,已经开发了更多的PTF(Rawls,Gish和Brakensiek,1991; W?sten,Pachepsky和Rawls,2001)。 Rawls,Brakensiek和Saxton(1982)使用5350套土壤数据开发了PTF。 Baumer(1992)使用美国国家土壤中毒定性数据库中的18000个土壤层位测量值开发了PTF,以预测FC和枯萎点(WP)的SWC。 W?sten,Lilly,Nemes和Le Bas(1999)在HYPRES数据库的基础上提出了PTF,该数据库包含5521套土壤数据。 Bruand,Perez Fernandez和Duval(2003)制定的PTF使用粒径和堆积密度来计算7种水势下的重量水含量。此外,已经评估了PTF在预测SWC中的准确性。 Givia等。 (2004年)表明,为土壤开发的PTF具有与被研究的土壤相似的特性,通常比其他土壤表现更好。 Cornelis,Ronsyn,Van Meirvenne和Hartmann(2001)提出,如果将PTF用于发达地区,其性能会更好。但是,对所需土壤特性的具体测量是不切实际的,目前开发的PTF最常用于估算表层土壤中的保水量和可用水分(Schaap,Nemes和Van Genuchten,2004年)。目前,通过野外调查我们只能得到土壤质地成分的粗略空间分布(Starks等,2003)。颗粒大小的组成可能与FC,WP和可用水分含量有关,可以通过回归方程(Pidgeon,2006)。预测SWC的关系是从包括英国在内的不同国家/地区找到的(Pidgeon,2006年),美国。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号