首页> 外文期刊>International Journal of Electrochemical Science >Amperometric Determination of Folic Acid at Multi-Walled Carbon Nanotube-Polyvinyl Sulfonic Acid Composite Film Modified Glassy Carbon Electrode
【24h】

Amperometric Determination of Folic Acid at Multi-Walled Carbon Nanotube-Polyvinyl Sulfonic Acid Composite Film Modified Glassy Carbon Electrode

机译:多孔碳纳米管-聚乙烯磺酸复合膜修饰玻碳电极安培法测定叶酸

获取原文
获取外文期刊封面目录资料

摘要

We investigated the electrochemical reduction behavior of folic acid (FA) at multi-walled carbonnanotube-polyvinylsulfonate (MWCNT-PVS) composite film modified glassy carbon electrode (GCE)+ using cyclic voltammetry (CV). FA undergoes a 2e /2H transfer electrochemical reduction process at.7 V with respect to Ag/AgCl reference electrode in pH 7. The reduction peak current increasedlinearly with the increase in concentration of FA. So far no reports are available for the amperometricdetermination of FA utilizing the reduction process occurring at negative over potential (0.7 V). Weattempted the amperometric studies making use of this reduction process at .7 V. MWCNT-PVS-5modified electrode showed good amperometric response in the wide linear range from 5.3 x 10 M to-3 1.7 x 10 M with a sensitivity of 0.1737 A mol cm . The surface morphology of MWCNT-PVSfilm was done by scanning electron microscopy (SEM) and the interfacial electron transferphenomenon at the modified electrode surface was studied using electrochemical impedancespectroscopy (EIS). The studies showed that MWCNT is well dispersed in PVS and the composite filmpossesses less electron transfer resistance making it a promising material for electrocatalytic andbiosensing applications.
机译:我们使用循环伏安法(CV)研究了多壁碳纳米管-聚乙烯磺酸盐(MWCNT-PVS)复合膜修饰玻碳电极(GCE)+上叶酸(FA)的电化学还原行为。相对于pH值为7的Ag / AgCl参比电极,FA在7 V时经历2e / 2H转移电化学还原过程。还原峰电流随FA浓度的增加而线性增加。迄今为止,尚无利用负电位(0.7 V)发生的还原过程对FA进行安培测定的报告。尝试了在0.7 V时使用此还原过程进行的安培研究.MWCNT-PVS-5修饰电极在5.3 x 10 M至-3 1.7 x 10 M的宽线性范围内显示出良好的安培响应,灵敏度为0.1737 A mol cm 。 MWCNT-PVS膜的表面形貌通过扫描电子显微镜(SEM)进行,并使用电化学阻抗谱(EIS)研究了修饰电极表面的界面电子转移现象。研究表明,MWCNT很好地分散在PVS中,并且该复合膜具有较小的电子转移阻力,使其成为用于电催化和生物传感应用的有前途的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号