...
首页> 外文期刊>Atmospheric Measurement Techniques >Remote sensing of multiple cloud layer heights using multi-angular measurements
【24h】

Remote sensing of multiple cloud layer heights using multi-angular measurements

机译:使用多角度测量值遥感多个云层高度

获取原文
           

摘要

Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross correlations between this set and collocated sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allows retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSP's CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEACsup4/supRS) campaign. RSP-retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 and 1880?nm and their combination. The 1880?nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption. brbr It is found that each band is well suitable for retrieving heights of cloud layers with optical thicknesses above about 0.1 and that RSP cloud layer height retrievals more accurately correspond to CPL cloud middle than cloud top. It is also found that the 1880?nm band yields the most accurate results for clouds at middle and high altitudes (4.0 to 17?km), while the 670?nm band is most accurate at low and middle altitudes (1.0–13.0?km). The dual band performs best over the broadest range and is suitable for accurately retrieving cloud layer heights between 1.0 and 16.0?km. Generally, the accuracy of the retrieved cloud top heights increases with increasing correlation value. Improved accuracy is achieved by using customized filtering techniques for each band with the most significant improvements occurring in the primary layer retrievals. RSP is able to measure a primary layer CTH with a median error of about 0.5?km when compared to CPL. For multilayered scenes, the second and third layer heights are determined median errors of about 1.5 and 2.0–2.5?km, respectively.
机译:云顶高度(CTH)影响云的辐射特性。改进的CTH观测值将有助于改进大型模型中的参数设置,并且在研究凝固点和云微物理学的变化时,有关CTH的准确信息也很重要。 NASA的机载研究扫描旋光仪(RSP)能够使用新颖的多角度对比方法测量云顶高度。为了确定CTH,选择一组连续的最低点反射率,并针对一系列假定的云顶高度,计算该组与其他视角处的并置组之间的互相关,从而得出相关轮廓。在云反射率是各向同性的假设下,相关剖面中的局部峰表示云层。该技术可以应用于每个RSP足迹,并且我们证明了对相关配置文件中多个峰的检测允许检索单个RSP足迹内多个云层的高度。本文使用通过区域调查(SEAC 4 RS)进行的排放与大气成分,云与气候耦合研究期间获得的数据,对RSP的CTH检索技术的体系结构和性能进行了深入描述。运动。使用来自Cloud Physics Lidar(CPL)的并置数据评估RSP提取的云高。探索了与相关程度,光学厚度,云层厚度和云层高度相关的方法的准确性。该技术适用于波长为670和1880nm的测量及其组合。由于强烈的水蒸气吸收作用,1880nm波段实际上对较低的对流层不敏感。 已发现,每个波段都非常适合于检索光学厚度大于约0.1的云层的高度,并且RSP云层高度的检索与CPL云层的中部比云层顶部的精确度更高。还发现,对于中高海拔(4.0至17?km)的云,1880?nm波段产生的结果最准确,而在中低海拔(1.0-13.0?km)的情况下,670?nm波段的结果最准确。 )。双波段在最宽的范围内表现最佳,适用于精确检索1.0至16.0?km之间的云层高度。通常,检索到的云顶高度的精度随相关值的增加而增加。通过对每个频段使用定制的滤波技术,可以实现更高的准确性,其中最重要的改进发生在主层检索中。与CPL相比,RSP能够测量主层CTH,中值误差约为0.5?km。对于多层场景,确定的第二层和第三层高度的中值误差分别约为1.5和2.0-2.5?km。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号