首页> 外文期刊>Atmospheric chemistry and physics >Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere
【24h】

Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere

机译:对流层上层氧化氮的模拟光化学分配评估

获取原文
           

摘要

Regional and global chemical transport models underpredict NOx (NO + NO2) in the upper troposphere where it is a precursor to the greenhouse gas ozone. The NOx bias has been shown in model evaluations using aircraft data (Singh et al., 2007) and total column NO2 (molecules cm?2) from satellite observations (Napelenok et al., 2008). The causes of NOx underpredictions have yet to be fully understood due to the interconnected nature of simulated emission, transport, and chemistry processes. Recent observation-based studies, in the upper troposphere, identify chemical rate coefficients as a potential source of error (Olson et al., 2006; Ren et al., 2008). Since typical chemistry evaluation techniques are not available for upper tropospheric conditions, this study develops an evaluation platform from in situ observations, stochastic convection, and deterministic chemistry. We derive a stochastic convection model and optimize it using two simulated datasets of time since convection, one based on meteorology, and the other on chemistry. The chemistry surrogate for time since convection is calculated using seven different chemical mechanisms, all of which predict shorter time since convection than our meteorological analysis. We evaluate chemical simulations by inter-comparison and by pairing results with observations based on NOx:HNO3, a photochemical aging indicator. Inter-comparison reveals individual chemical mechanism biases and recommended updates. Evaluation against observations shows that all chemical mechanisms overpredict NOx removal relative to long-lived methanol and carbon monoxide. All chemical mechanisms underpredict observed NOx by at least 30%, and further evaluation is necessary to refine simulation sensitivities to initial conditions and chemical rate uncertainties.
机译:区域和全球的化学迁移模型低估了对流层上层的NO x (NO + NO 2 ),而对流层是温室气体臭氧的前兆。 NO x 偏差已在使用飞机数据(Singh等,2007)和总NO 2 (分子cm ?2 )从卫星观测(Napelenok等,2008)。由于模拟排放,运输和化学过程的相互联系的性质,NO x 预测不足的原因尚未完全了解。最近在对流层高层的基于观测的研究将化学速率系数确定为潜在的误差源(Olson等,2006; Ren等,2008)。由于典型的化学评估技术不适用于对流层高空条件,因此本研究从原位观测,随机对流和确定性化学开发了一个评估平台。我们导出了一个随机对流模型,并使用两个自对流以来的模拟时间数据集对其进行了优化,一个基于气象,另一个基于化学。自对流以来的化学时间是使用七个不同的化学机制计算的,所有这些机制预测的对流时间都比我们的气象分析要短。我们通过相互比较和将结果与基于光化学老化指示剂NO x :HNO 3 的观察结果配对来评估化学模拟。相互比较揭示了各个化学机理的偏见和建议的更新。对观察结果的评估表明,相对于长寿命的甲醇和一氧化碳,所有化学机理都过高地预测了NO x 的去除。所有化学机制都低估了观察到的NO x 至少30%,因此有必要进行进一步评估,以优化对初始条件和化学速率不确定性的模拟敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号